Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Construct and compare multiple machine learning models to predict lymph node (LN) metastasis in cervical cancer, utilizing radiomic features extracted from preoperative multi-parametric magnetic resonance imaging (MRI).

Methods

This study retrospectively enrolled 407 patients with cervical cancer who were randomly divided into a training cohort (n=284) and a validation cohort (n=123). A total of 4065 radiomic features were extracted from the tumor regions of interest on contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging for each patient. The Mann-Whitney U test, Spearman correlation analysis, and selection operator Cox regression analysis were employed for radiomic feature selection. The relationship between MRI radiomic features and LN status was analyzed using five machine-learning algorithms. Model performance was evaluated by measuring the area under the receiver-operating characteristic curve (AUC) and accuracy (ACC). Moreover, Kaplan–Meier analysis was used to validate the prognostic value of selected clinical and radiomic characteristics.

Results

LN metastasis was pathologically detected in 24.3% (99/407) of patients. Following a three-step feature selection, 18 radiomic features were employed for model construction. The XGBoost model exhibited superior performance compared to other models, achieving an AUC, accuracy, sensitivity, specificity, and F1 score of 0.9268, 0.8969, 0.7419, 0.9891, and 0.8364, respectively, on the validation set. Additionally, Kaplan−Meier curves indicated a significant correlation between radiomic scores and progression-free survival in cervical cancer patients ( < 0.05).

Discussion

Among the machine learning models, XGBoost demonstrated the best predictive ability for LN metastasis and showed prognostic value through its radiomic score, highlighting its clinical potential.

Conclusion

Machine learning-based multi-parametric MRI radiomic analysis demonstrated promising performance in the preoperative prediction of LN metastasis and clinical prognosis in cervical cancer.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056376718250904221020
2025-09-18
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056376718.html?itemId=/content/journals/cmir/10.2174/0115734056376718250904221020&mimeType=html&fmt=ahah

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. BizuayehuH.M. AhmedK.Y. KibretG.D. DadiA.F. BelachewS.A. BagadeT. TegegneT.K. VenchiaruttiR.L. KibretK.T. HailegebirealA.H. AssefaY. KhanM.N. AbajobirA. AleneK.A. MengeshaZ. ErkuD. EnquobahrieD.A. MinasT.Z. MisganE. RossA.G. Global disparities of cancer and its projected burden in 2050.JAMA Netw. Open2024711e244319810.1001/jamanetworkopen.2024.4319839499513
    [Google Scholar]
  3. OlawaiyeA.B. BakerT.P. WashingtonM.K. MutchD.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer.CA Cancer J. Clin.202171428729810.3322/caac.2166333784415
    [Google Scholar]
  4. IkedaM. ShidaM. ShigetaS. NagaseS. TakahashiF. YamagamiW. KatabuchiH. YaegashiN. AokiD. MikamiM. The trend and outcome of postsurgical therapy for high-risk early-stage cervical cancer with lymph node metastasis in Japan: A report from the Japan Society of Gynecologic Oncology (JSGO) guidelines evaluation committee.J. Gynecol. Oncol.2021323e4410.3802/jgo.2021.32.e4433825359
    [Google Scholar]
  5. LapuzC. Kondalsamy-ChennakesavanS. BernshawD. KhawP. NarayanK. Stage IB cervix cancer with nodal involvement treated with primary surgery or primary radiotherapy: Patterns of failure and outcomes in a contemporary population.J. Med. Imaging Radiat. Oncol.201660227428210.1111/1754‑9485.1241126549207
    [Google Scholar]
  6. WangS. LiJ. XieJ. LiuF. DuanY. WuY. HuangS. HeX. WangZ. WuX. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway.Oncogene201837304164418010.1038/s41388‑018‑0252‑x29706653
    [Google Scholar]
  7. ZhangW. HeW. ShiY. ZhaoJ. LiuS. ZhangF. YangJ. XieC. ZhangY. Aberrant TIMELESS expression is associated with poor clinical survival and lymph node metastasis in early-stage cervical carcinoma.Int. J. Oncol.201750117318410.3892/ijo.2016.378427909716
    [Google Scholar]
  8. PetersenL.J. NielsenJ.B. LangkildeN.C. PetersenA. Afshar-OromiehA. De SouzaN.M. De PaepeK. FiskerR.V. ArpD.T. CarlJ. HaberkornU. ZachoH.D. 68Ga-PSMA PET/CT compared with MRI/CT and diffusion-weighted MRI for primary lymph node staging prior to definitive radiotherapy in prostate cancer: A prospective diagnostic test accuracy study.World J. Urol.202038493994810.1007/s00345‑019‑02846‑z31190153
    [Google Scholar]
  9. LL LQ TL Diagnostic value and clinical significance of MRI and CT in detecting lymph node metastasis of early cervical cancer.Oncol Lett202019170070610.3892/ol.2019.1118031897185
    [Google Scholar]
  10. HuangB. FangF. Progress in the study of lymph node metastasis in early-stage cervical cancer.Curr. Med. Sci.201838456757410.1007/s11596‑018‑1915‑030128863
    [Google Scholar]
  11. AertsH.J.W.L. The potential of radiomic-based phenotyping in precision medicine.JAMA Oncol.20162121636164210.1001/jamaoncol.2016.263127541161
    [Google Scholar]
  12. HuangY. LiangC. HeL. TianJ. LiangC. ChenX. MaZ. LiuZ. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer.J. Clin. Oncol.201634182157216410.1200/JCO.2015.65.912827138577
    [Google Scholar]
  13. WuS. ZhengJ. LiY. WuZ. ShiS. HuangM. YuH. DongW. HuangJ. LinT. Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer.EBioMedicine201834768410.1016/j.ebiom.2018.07.02930078735
    [Google Scholar]
  14. ForghaniR. ChatterjeeA. ReinholdC. Pérez-LaraA. Romero-SanchezG. UenoY. BayatM. AlexanderJ.W.M. KadiL. ChankowskyJ. SeuntjensJ. ForghaniB. Head and neck squamous cell carcinoma: Prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning.Eur. Radiol.201929116172618110.1007/s00330‑019‑06159‑y30980127
    [Google Scholar]
  15. WangW. JinF. SongL. YangJ. YeY. LiuJ. XuL. AnP. Prediction of peripheral lymph node metastasis (LNM) in thyroid cancer using delta radiomics derived from enhanced CT combined with multiple machine learning algorithms.Eur. J. Med. Res.202530116410.1186/s40001‑025‑02438‑140075509
    [Google Scholar]
  16. MulitaF. VerrasG.I. AnagnostopoulosC.N. KotisK. A smarter health through the internet of surgical things.Sensors20222212457710.3390/s2212457735746359
    [Google Scholar]
  17. DimopoulosP. MulitaA. AntzoulasA. BodardS. LeivaditisV. AkridaI. BenetatosN. KatsanosK. AnagnostopoulosC.N. MulitaF. The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: A narrative-review.Prz. Gastroenterol.202419322123010.5114/pg.2024.14314739802971
    [Google Scholar]
  18. ChoyG. KhalilzadehO. MichalskiM. DoS. SamirA.E. PianykhO.S. GeisJ.R. PandharipandeP.V. BrinkJ.A. DreyerK.J. Current applications and future impact of machine learning in radiology.Radiology2018288231832810.1148/radiol.201817182029944078
    [Google Scholar]
  19. ZhangZ. WanX. LeiX. WuY. ZhangJ. AiY. YuB. LiuX. JinJ. XieC. JinX. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer.Insights Imaging20231416510.1186/s13244‑023‑01405‑w37060378
    [Google Scholar]
  20. XuH. LiuJ. ChenZ. WangC. LiuY. WangM. ZhouP. LuoH. RenJ. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer.Eur. Radiol.20223274845485610.1007/s00330‑022‑08539‑335079887
    [Google Scholar]
  21. YuY. HeZ. OuyangJ. TanY. ChenY. GuY. MaoL. RenW. WangJ. LinL. WuZ. LiuJ. OuQ. HuQ. LiA. ChenK. LiC. LuN. LiX. SuF. LiuQ. XieC. YaoH. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.EBioMedicine20216910346010.1016/j.ebiom.2021.10346034233259
    [Google Scholar]
  22. FanY. WangX. DongY. CuiE. WangH. SunX. SuJ. LuoY. YuT. JiangX. Multiregional radiomics of brain metastasis can predict response to EGFR-TKI in metastatic NSCLC.Eur. Radiol.202333117902791210.1007/s00330‑023‑09709‑737142868
    [Google Scholar]
  23. ShengW. XiaS. WangY. YanL. KeS. MellisaE. GongF. ZhengY. TangT. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning.Front. Oncol.20221296460510.3389/fonc.2022.96460536172153
    [Google Scholar]
  24. PereiraH.M. Leite DuarteM.E. Ribeiro DamascenoI. de Oliveira Moura SantosL.A. Nogueira-BarbosaM.H. Machine learning-based CT radiomics features for the prediction of pulmonary metastasis in osteosarcoma.Br. J. Radiol.20219411242020139110.1259/bjr.2020139134111978
    [Google Scholar]
  25. WangT. GaoT. YangJ. YanX. WangY. ZhouX. TianJ. HuangL. ZhangM. Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging.Eur. J. Radiol.201911412813510.1016/j.ejrad.2019.01.00331005162
    [Google Scholar]
  26. DongT. YangC. CuiB. ZhangT. SunX. SongK. WangL. KongB. YangX. Development and validation of a deep learning radiomics model predicting lymph node status in operable cervical cancer.Front. Oncol.20201046410.3389/fonc.2020.0046432373511
    [Google Scholar]
  27. van GriethuysenJ.J.M. FedorovA. ParmarC. HosnyA. AucoinN. NarayanV. Beets-TanR.G.H. Fillion-RobinJ.C. PieperS. AertsH.J.W.L. Computational radiomics system to decode the radiographic phenotype.Cancer Res.20177721e104e10710.1158/0008‑5472.CAN‑17‑033929092951
    [Google Scholar]
  28. CarréA. KlausnerG. EdjlaliM. LerousseauM. Briend-DiopJ. SunR. AmmariS. ReuzéS. Alvarez AndresE. EstienneT. NiyotekaS. BattistellaE. VakalopoulouM. DhermainF. ParagiosN. DeutschE. OppenheimC. PalludJ. RobertC. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics.Sci. Rep.20201011234010.1038/s41598‑020‑69298‑z32704007
    [Google Scholar]
  29. HodnelandE. KaliyugarasanS. Wagner-LarsenK.S. LuraN. AndersenE. BartschH. SmitN. HalleM.K. KrakstadC. LundervoldA.S. HaldorsenI.S. Fully automatic whole-volume tumor segmentation in cervical cancer.Cancers20221410237210.3390/cancers1410237235625977
    [Google Scholar]
  30. LinY.C. LinG. PandeyS. YehC.H. WangJ.J. LinC.Y. HoT.Y. KoS.F. NgS.H. Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning.Eur. Radiol.20233396548655610.1007/s00330‑023‑09827‑237338554
    [Google Scholar]
  31. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  32. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  33. YuanY. RenJ. TaoX. Machine learning–based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma.Eur. Radiol.20213196429643710.1007/s00330‑021‑07731‑133569617
    [Google Scholar]
  34. FangJ. ZhangB. WangS. JinY. WangF. DingY. ChenQ. ChenL. LiY. LiM. ChenZ. LiuL. LiuZ. TianJ. ZhangS. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer.Theranostics20201052284229210.7150/thno.3742932089742
    [Google Scholar]
  35. KanY. DongD. ZhangY. JiangW. ZhaoN. HanL. FangM. ZangY. HuC. TianJ. LiC. LuoY. Radiomic signature as a predictive factor for lymph node metastasis in early‐stage cervical cancer.J. Magn. Reson. Imaging201949130431010.1002/jmri.2620930102438
    [Google Scholar]
  36. YamadaI. MiyasakaN. KobayashiD. WakanaK. OshimaN. WakabayashiA. SakamotoJ. SaidaY. TateishiU. EishiY. Endometrial carcinoma: Texture analysis of apparent diffusion coefficient maps and its correlation with histopathologic findings and prognosis.Radiol. Imaging Cancer201912e19005410.1148/rycan.201919005433778684
    [Google Scholar]
  37. XuX. LiH. WangS. FangM. ZhongL. FanW. DongD. TianJ. ZhaoX. Multiplanar MRI-based predictive model for preoperative assessment of lymph node metastasis in endometrial cancer.Front. Oncol.20199100710.3389/fonc.2019.0100731649877
    [Google Scholar]
  38. Ytre-HaugeS. DybvikJ.A. LundervoldA. SalvesenØ.O. KrakstadC. FasmerK.E. WernerH.M. GaneshanB. HøivikE. BjørgeL. TrovikJ. HaldorsenI.S. Preoperative tumor texture analysis on MRI predicts high‐risk disease and reduced survival in endometrial cancer.J. Magn. Reson. Imaging20184861637164710.1002/jmri.2618430102441
    [Google Scholar]
  39. SongB.I. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer.Breast Cancer202128366467110.1007/s12282‑020‑01202‑z33454875
    [Google Scholar]
  40. LiuS. LiR. LiuQ. SunD. YangH. PanH. WangL. SongS. Radiomics model of 18F-FDG PET/CT imaging for predicting disease-free survival of early-stage uterine cervical squamous cancer.Cancer Biomark.202233224925910.3233/CBM‑21020135213357
    [Google Scholar]
  41. ZhengR. CaiM. LanL. HuangX.W. YangY.J. PowellM. LinF. An MRI-based radiomics signature and clinical characteristics for survival prediction in early-stage cervical cancer.Br. J. Radiol.20229511292021083810.1259/bjr.2021083834797703
    [Google Scholar]
  42. LiuC. GardnerS.J. WenN. ElshaikhM.A. SiddiquiF. MovsasB. ChettyI.J. Automatic segmentation of the prostate on CT images using deep neural networks (DNN).Int. J. Radiat. Oncol. Biol. Phys.2019104492493210.1016/j.ijrobp.2019.03.01730890447
    [Google Scholar]
  43. ChenX. MenK. ChenB. TangY. ZhangT. WangS. LiY. DaiJ. CNN-based quality assurance for automatic segmentation of breast cancer in radiotherapy.Front. Oncol.20201052410.3389/fonc.2020.0052432426272
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056376718250904221020
Loading
/content/journals/cmir/10.2174/0115734056376718250904221020
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test