Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study evaluated the impact of Low-Intensity Pulsed Ultrasound (LIPUS) on bone radio density in patients undergoing orthodontic treatment with clear aligners, aiming to enhance bone remodeling and improve treatment stability.

Methods

This retrospective study included 68 participants divided into two groups: 34 treated with LIPUS and 34 in a control group. Bone radio density was measured using Hounsfield units from CBCT scans before and after treatment. Statistical analyses included Mann-Whitney U tests and paired -tests.

Results

The average age was 29.85 ± 14.85 years in the control group and 36.29 ± 12.78 years in the LIPUS group. Bone radio density in the upper arch of the LIPUS group significantly increased from 444.6 HU to 751.3 HU (p < 0.001), while the control group showed a slight decrease in the upper arch (657.4 HU to 650.5 HU, p = 0.86). In the lower arch, a similar trend was observed in the LIPUS group, with an increase from 767.7 HU to 823.4 HU (p = 0.17), though not statistically significant. There were no significant differences in post-treatment ABO DI scores between groups, suggesting equivalent effectiveness in achieving orthodontic outcomes.

Conclusion

LIPUS with clear aligners seems promising in enhancing bone radio density, indicating an improved bone remodeling effect. This highlights LIPUS's potential as a beneficial adjunct in orthodontic treatments.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056371884250324151755
2025-04-17
2025-09-05
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056371884.html?itemId=/content/journals/cmir/10.2174/0115734056371884250324151755&mimeType=html&fmt=ahah

References

  1. KeslingH.D. The philosophy of the tooth positioning appliance.Am. J. Orthod. Oral Surg.194531629730410.1016/0096‑6347(45)90101‑3
    [Google Scholar]
  2. KimT-W. EcharriP. Clear aligner: An efficient, esthetic, and comfortable option for an adult patient.World J. Orthod.200781131817373221
    [Google Scholar]
  3. BoydR.L. MillerR.J. VlaskalicV. The Invisalign system in adult orthodontics: Mild crowding and space closure cases.J. Clin. Orthod.2000344203212
    [Google Scholar]
  4. HuangA.T. HuangD. Overcoming limitations in finishing.Controversies in Clear Aligner Therapy: Contemporary Perspectives, Limitations, and Solutions. HuangA.T. HuangD. ChamSpringer International Publishing202216317410.1007/978‑3‑030‑92810‑0_11
    [Google Scholar]
  5. KeY. ZhuY. ZhuM. A comparison of treatment effectiveness between clear aligner and fixed appliance therapies.BMC Oral Health20191912410.1186/s12903‑018‑0695‑z30674307
    [Google Scholar]
  6. KaurH. El-BialyT. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS).J. Clin. Med.202095130310.3390/jcm905130332370099
    [Google Scholar]
  7. ter HaarG. Therapeutic applications of ultrasound.Prog. Biophys. Mol. Biol.2007931-311112910.1016/j.pbiomolbio.2006.07.00516930682
    [Google Scholar]
  8. DinnoM.A. DysonM. YoungS.R. MortimerA.J. HartJ. CrumL.A. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound.Phys. Med. Biol.198934111543155210.1088/0031‑9155/34/11/0032685832
    [Google Scholar]
  9. Dalla-BonaD.A. TanakaE. InubushiT. OkaH. OhtaA. OkadaH. MiyauchiM. TakataT. TanneK. Cementoblast response to low- and high-intensity ultrasound.Arch. Oral Biol.200853431832310.1016/j.archoralbio.2007.11.00618163974
    [Google Scholar]
  10. InubushiT. TanakaE. RegoE.B. OhtaniJ. KawazoeA. TanneK. MiyauchiM. TakataT. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application.Bone201353249750610.1016/j.bone.2013.01.02123337039
    [Google Scholar]
  11. Al-DaghreerS. DoschakM. SloanA.J. MajorP.W. HeoG. ScurtescuC. TsuiY.Y. El-BialyT. Long term effect of low intensity pulsed ultrasound on a human tooth slice organ culture.Arch. Oral Biol.201257676076810.1016/j.archoralbio.2011.11.01022138259
    [Google Scholar]
  12. Al-DaghreerS. DoschakM. SloanA.J. MajorP.W. HeoG. ScurtescuC. TsuiY.Y. El-BialyT. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs.Ultrasound Med. Biol.20144061187119610.1016/j.ultrasmedbio.2013.12.01624613212
    [Google Scholar]
  13. RazaH. MajorP. DederichD. El-BialyT. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: A prospective, double-blind, controlled clinical trial.Angle Orthod.201686455055710.2319/081915‑554.126624250
    [Google Scholar]
  14. El-BialyT. FaroukK. CarlyleT.D. WiltshireW. DrummondR. DumoreT. KnowltonK. TompsonB. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: A prospective multi-center randomized controlled trial.J. Clin. Med.20209380410.3390/jcm903080432188053
    [Google Scholar]
  15. AranyarachkulP. CarusoJ. GantesB. SchulzE. RiggsM. DusI. YamadaJ.M. CriggerM. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography.Int. J. Oral Maxillofac. Implants200520341642415973953
    [Google Scholar]
  16. KapilaS.D. NervinaJ.M. CBCT in orthodontics: Assessment of treatment outcomes and indications for its use.Dentomaxillofac. Radiol.20154412014028210.1259/dmfr.2014028225358833
    [Google Scholar]
  17. MaZ-G. YangC. FangB. XiaY.H. MaoL.X. FengY.M. Three-D imaging of dental alveolar bone change after fixed orthodontic treatment in patients with periodontitis.Int. J. Clin. Exp. Med.2015822385239125932177
    [Google Scholar]
  18. CamposM.J.S. de AlbuquerqueE.G. PintoB.C.H. HúngaroH.M. GravinaM.A. FragaM.R. VitralR.W.F. The role of orthodontic tooth movement in bone and root mineral density: A study of patients submitted and not submitted to orthodontic treatment.Med. Sci. Monit.20121812CR752CR75710.12659/MSM.88360423197239
    [Google Scholar]
  19. MahP. ReevesT.E. McDavidW.D. Deriving Hounsfield units using grey levels in cone beam computed tomography.Dentomaxillofac. Radiol.201039632333510.1259/dmfr/1960330420729181
    [Google Scholar]
  20. ReevesT.E. MahP. McDavidW.D. Deriving Hounsfield units using grey levels in cone beam CT: A clinical application.Dentomaxillofac. Radiol.201241650050810.1259/dmfr/3164043322752324
    [Google Scholar]
  21. KimD.G. Can dental cone beam computed tomography assess bone mineral density?J. Bone Metab.201421211712610.11005/jbm.2014.21.2.11725006568
    [Google Scholar]
  22. RinchuseD.J. MilesP.G. SheridanJ.J. Orthodontic retention and stability: A clinical perspective.J. Clin. Orthod.200741312513217473411
    [Google Scholar]
  23. YuJ.H. HuangH.L. LiuC.F. WuJ. LiY.F. TsaiM.T. HsuJ.T. Does orthodontic treatment affect the alveolar bone density?Medicine (Baltimore)20169510e308010.1097/MD.000000000000308026962841
    [Google Scholar]
  24. RuN. LiuS.S.Y. ZhuangL. LiS. BaiY. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.Angle Orthod.201383340240910.2319/031312‑219.123030553
    [Google Scholar]
  25. ZhuangL. BaiY. MengX. Three-dimensional morphology of root and alveolar trabecular bone during tooth movement using micro-computed tomography.Angle Orthod.201181342042510.2319/071910‑418.121299390
    [Google Scholar]
  26. ZhouJ. ZhuY. AiD. ZhouM. LiH. FuY. SongJ. Low-intensity pulsed ultrasound regulates osteoblast-osteoclast crosstalk via EphrinB2/EphB4 signaling for orthodontic alveolar bone remodeling.Front. Bioeng. Biotechnol.202311119272010.3389/fbioe.2023.119272037425367
    [Google Scholar]
  27. ZhengF. WuT. WangF. LiH. TangH. CuiX. LiC. WangY. JiangJ. Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1.Front. Bioeng. Biotechnol.202412134740610.3389/fbioe.2024.134740638694622
    [Google Scholar]
  28. PascoalS. OliveiraS. MonteiroF. PadrãoJ. CostaR. ZilleA. CatarinoS.O. SilvaF.S. PinhoT. CarvalhoÓ. Influence of ultrasound stimulation on the viability, proliferation and protein expression of osteoblasts and periodontal ligament fibroblasts.Biomedicines202412236110.3390/biomedicines1202036138397963
    [Google Scholar]
  29. Abu-ArqubS. AhmidaA. Da Cunha GodoyL. KuoC.L. UpadhyayM. YadavS. Insight into clear aligner therapy protocols and preferences among members of the American Association of Orthodontists in the United States and Canada.Angle Orthod.202393441742610.2319/101022‑694.136912674
    [Google Scholar]
  30. WahlN. Orthodontics in 3 millennia. Chapter 11: The golden age of orthodontics.Am. J. Orthod. Dentofacial Orthop.2006130454955310.1016/j.ajodo.2006.06.00117045157
    [Google Scholar]
  31. AdeyemoW.L. LadeindeA.L. OgunleweM.O. Clinical evaluation of post-extraction site wound healing.J. Contemp Dent Pract.200673404910.5005/jcdp‑7‑3‑40
    [Google Scholar]
  32. Burgos-ArcegaN.A. Scougall-VilchisR.J. Morales-ValenzuelaA.A. Hegazy-HassanW. Lara-CarrilloE. Toral-RizoV.H. Velázquez-EnríquezU. Salmerón-ValdésE.N. Agreement of the discrepancy index obtained using digital and manual techniques: A comparative study.Appl. Sci.20221212610510.3390/app12126105
    [Google Scholar]
  33. MiuraK. MotoyoshiM. InabaM. IwaiH. KarasawaY. ShimizuN. A preliminary study of the effects of low-intensity pulsed ultrasound exposure on the stability of orthodontic miniscrews in growing rats.Eur. J. Orthod.201436441942410.1093/ejo/cjt06624062379
    [Google Scholar]
  34. El-BialyT. El-ShamyI. GraberT.M. Growth modification of the rabbit mandible using therapeutic ultrasound: Is it possible to enhance functional appliance results?Angle Orthod.200373663163914719726
    [Google Scholar]
  35. Sri SantoshT. SrikanthK. HarithaD. Lohith ReddyM. Ravi ChandraB. ParmarR. Need for speed in orthodontics: A review of noninvasive methods to accelerate the orthodontic tooth movement.Int. J. Oral Care Res.202083485110.4103/INJO.INJO_20_20
    [Google Scholar]
  36. XueH. ZhengJ. CuiZ. BaiX. LiG. ZhangC. HeS. LiW. LajudS.A. DuanY. ZhouH. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway.PLoS One201387e6892610.1371/journal.pone.006892623894376
    [Google Scholar]
  37. HigashiY. InamiK. ShimizuH. MatsumotoN. Effect of low intensity pulsed ultrasound on osteoclast differentiation.Orthod. Waves202079416316910.1080/13440241.2020.1843354
    [Google Scholar]
  38. TanakaE. KurodaS. HoriuchiS. TabataA. El-BialyT. Low-intensity pulsed ultrasound in dentofacial tissue engineering.Ann. Biomed. Eng.201543487188610.1007/s10439‑015‑1274‑y25672801
    [Google Scholar]
  39. El-BialyT. TanakaE. AizenbudD. Therapeutic Ultrasound in Dentistry: Applications for Dentofacial Repair, Regeneration, and Tissue Engineering.Springer201810.1007/978‑3‑319‑66323‑4
    [Google Scholar]
  40. QinH. LuoZ. SunY. HeZ. QiB. ChenY. WangJ. LiC. LinW. HanZ. ZhuY. Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment.Int. J. Biol. Sci.20231941123114510.7150/ijbs.7968536923940
    [Google Scholar]
  41. BahammamM. El-BialyT. Effect of low-intensity pulsed ultrasound (LIPUS) on alveolar bone during maxillary expansion using clear aligners.Biomed Res Int.20222022450506310.1155/2022/4505063
    [Google Scholar]
  42. QamruddinI. Alam M.K. Khamis M.F. Minimally invasive techniques to accelerate the orthodontic tooth movement: A systematic review of animal studies.Biomed Res Int.2015201560853010.1155/2015/608530
    [Google Scholar]
  43. ToyE. ÖztürkF. AltındişS. KozacıoğluS. ToyH. Effects of low-intensity pulsed ultrasound on bone formation after the expansion of the inter-premaxillary suture in rats: A histologic and immunohistochemical study.Aust. Orthod. J.201430217618310.2478/aoj‑2014‑001525549520
    [Google Scholar]
  44. PounderN.M. HarrisonA.J. Low intensity pulsed ultrasound for fracture healing: A review of the clinical evidence and the associated biological mechanism of action.Ultrasonics200848433033810.1016/j.ultras.2008.02.00518486959
    [Google Scholar]
  45. de GusmãoC.V.B. PauliJ.R. SaadM.J.A. AlvesJ.M. BelangeroW.D. Low-intensity ultrasound increases FAK, ERK-1/2, and IRS-1 expression of intact rat bones in a noncumulative manner.Clin. Orthop. Relat. Res.201046841149115610.1007/s11999‑009‑1146‑619851814
    [Google Scholar]
  46. KaurH. SirakiA.G. UludağH. DederichD.N. FloodP. El-BialyT. Role of reactive oxygen species during low-intensity pulsed ultrasound application in MC-3 T3 E1 pre-osteoblast cell culture.Ultrasound Med. Biol.201743112699271210.1016/j.ultrasmedbio.2017.07.00228807447
    [Google Scholar]
  47. KusuyamaJ. NakamuraT. OhnishiT. EirakuN. NoguchiK. MatsuguchiT. Low-intensity pulsed ultrasound (LIPUS) promotes BMP9-induced osteogenesis and suppresses inflammatory responses in human periodontal ligament-derived stem cells.J. Orthop. Trauma2017317S410.1097/01.bot.0000520897.92470.7028632668
    [Google Scholar]
  48. AlazzawiM.M.J. HuseinA. AlamM.K. HassanR. ShaariR. AzlinaA. SalzihanM.S. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats.Prog. Orthod.20181911010.1186/s40510‑018‑0208‑229658096
    [Google Scholar]
  49. WangY. CaoX. ShenY. ZhongQ. WuZ. WuY. WengW. XuC. Evaluate the effects of low-intensity pulsed ultrasound on dental implant osseointegration under type II diabetes.Front. Bioeng. Biotechnol.202412135641210.3389/fbioe.2024.135641238371421
    [Google Scholar]
  50. KingsmillV.J. BoydeA. Variation in the apparent density of human mandibular bone with age and dental status.J. Anat.1998192223324410.1046/j.1469‑7580.1998.19220233.x9643424
    [Google Scholar]
  51. DeshpandeN. HadiM.S. LillardJ.C. PassiasP.G. LinzeyJ.R. SaadehY.S. LaBagnaraM. ParkP. Alternatives to DEXA for the assessment of bone density: A systematic review of the literature and future recommendations.J. Neurosurg. Spine202338443644510.3171/2022.11.SPINE2287536609369
    [Google Scholar]
  52. EgurenM. HolguinA. DiazK. VidalonJ. LinanC. Pacheco-PereiraC. Lagravere VichM.O. Can gray values be converted to Hounsfield units? A systematic review.Dentomaxillofac. Radiol.20225112021014010.1259/dmfr.2021014034148350
    [Google Scholar]
  53. HuangM. ZouJ. ZhangY. BhattiU.A. ChenJ. Efficient click-based interactive segmentation for medical image with improved Plain-ViT.IEEE J. Biomed. Health Inform.2024PP11210.1109/JBHI.2024.339289338656851
    [Google Scholar]
  54. HuangM. ZhangX.S. BhattiU.A. WuY.Y. ZhangY. Yasin GhadiY. An interpretable approach using hybrid graph networks and explainable AI for intelligent diagnosis recommendations in chronic disease care.Biomed. Signal Process. Control20249110591310.1016/j.bspc.2023.105913
    [Google Scholar]
  55. NizamaniA.H. ChenZ. NizamaniA.A. BhattiU.A. Advance brain tumor segmentation using feature fusion methods with deep U-Net model with CNN for MRI data.J. King Saud Univ. - Comput. Inf. Sci.202335910179310.1016/j.jksuci.2023.101793
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056371884250324151755
Loading
/content/journals/cmir/10.2174/0115734056371884250324151755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test