Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

To examine the integration of artificial intelligence (AI) into Picture Archiving and Communication Systems (PACS) and assess its impact on medical imaging, diagnostic workflows, and patient outcomes. This review explores the technological evolution, key advancements, and challenges associated with AI-enhanced PACS in healthcare settings.

Methods

A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science databases, covering articles from January 2000 to October 2024. Search terms included “artificial intelligence,” “machine learning,” “deep learning,” and “PACS,” combined with keywords related to diagnostic accuracy and workflow optimization. Articles were selected based on predefined inclusion and exclusion criteria, focusing on peer-reviewed studies that discussed AI applications in PACS, innovations in medical imaging, and workflow improvements. A total of 183 studies met the inclusion criteria, comprising original research, systematic reviews, and meta-analyses.

Results

AI integration in PACS has significantly enhanced diagnostic accuracy, achieving improvements of up to 93.2% in some imaging modalities, such as early tumor detection and anomaly identification. Workflow efficiency has been transformed, with diagnostic times reduced by up to 90% for critical conditions like intracranial hemorrhages. Convolutional neural networks (CNNs) have demonstrated exceptional performance in image segmentation, achieving up to 94% accuracy, and in motion artifact correction, further enhancing diagnostic precision. Natural language processing (NLP) tools have expedited radiology workflows, reducing reporting times by 30–50% and improving consistency in report generation. Cloud-based solutions have also improved accessibility, enabling real-time collaboration and remote diagnostics. However, challenges in data privacy, regulatory compliance, and interoperability persist, emphasizing the need for standardized frameworks and robust security protocols.

Conclusion

The integration of AI into PACS represents a pivotal transformation in medical imaging, offering improved diagnostic workflows and potential for personalized patient care. Addressing existing challenges and enhancing interoperability will be essential for maximizing the benefits of AI-powered PACS in healthcare.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056370620250403030638
2025-04-22
2025-10-03
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056370620.html?itemId=/content/journals/cmir/10.2174/0115734056370620250403030638&mimeType=html&fmt=ahah

References

  1. Medical imaging technology association (mita);2024Available from: https://dicom.nema.org/medical/Dicom/current/output/html/part01.html [cited 2024 October 02, 2024]
  2. StricklandN.H. Current topic: PACS (picture archiving and communication systems): Filmless radiology.Arch. Dis. Child.2000831828610.1136/adc.83.1.8210869010
    [Google Scholar]
  3. HuangH.K. PACS-Based Multimedia Imaging Informatics: Basic Principles and Applications.3rd edNJ, USAJohn Wiley & Sons, Inc.2019
    [Google Scholar]
  4. Intelerad. how does PACS work with radiology information systems (RIS) and hospital information system (HIS).2022Available from: https://www.intelerad.com/en/2022/08/09/how-does-pacs-work-together-with-radiology-information-systems/
  5. SajediP. SalamonN. HostetterJ. KarnezisS. VijayasarathiA. Reshaping radiology precall preparation: Integrating a cloud-based pacs viewer into a flipped classroom model.Curr. Probl. Diagn. Radiol.201948544144710.1067/j.cpradiol.2018.07.01430149899
    [Google Scholar]
  6. FornellD. 5 Trends in Enterprise Imaging and PACS Systems.Park Ridge, NJ, USAWainscot Media2021
    [Google Scholar]
  7. Picture archiving and communication system market.2022Available from: https://www.persistencemarketresearch.com/market-research/picture-archiving-and-communication-system-market.asp [cited 2024 January 01, 2024].
  8. AI in medical imaging market size & trends.2024Available from: https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-medical-imaging-market [cited 2025 January 01, 2025].
  9. Theriault-LauzierP. CobinD. TastetO. LanglaisE.L. TajiB. KangG. ChongA.Y. SoD. TangA. GichoyaJ.W. ChandarS. DézielP.L. HussinJ.G. KadouryS. AvramR. A responsible framework for applying artificial intelligence on medical images and signals at the point of care: The PACS-AI platform.Can. J. Cardiol.202440101828184010.1016/j.cjca.2024.05.02538885787
    [Google Scholar]
  10. LewinJ. SchoenherrS. SeebassM. LinM. PhilpottsL. EtesamiM. ButlerR. DurandM. HellerS. HeacockL. MoyL. TocinoI. WesterhoffM. PACS-integrated machine learning breast density classifier: Clinical validation.Clin. Imag.202310120020510.1016/j.clinimag.2023.06.02337421715
    [Google Scholar]
  11. KawaJ. PycińskiB. SmolińskiM. BożekP. KwaseckiM. PietrzykB. SzymańskiD. Design and implementation of a cloud PACS architecture.Sensors20222221856910.3390/s2221856936366266
    [Google Scholar]
  12. BigonahM. JamshidiF. MarghituD. Immersive Agricultural Education: Gamifying Learning With Augmented Reality and Virtual Reality.Cases on Collaborative Experiential Ecological Literacy for Education. NaharL. TayemN. Hershey, Pennsylvania, USAISI Global20245110.4018/979‑8‑3693‑1710‑5.ch002
    [Google Scholar]
  13. JobanputraK. Customer service: How ai is transforming interactions.2024Available from: https://www.forbes.com/councils/forbesbusinesscouncil/2024/08/22/customer-service-how-ai-is-transforming-interactions/
  14. AhmadiradZ. Evaluating the Influence of AI on Market Values in Finance: Distinguishing Between Authentic Growth and Speculative Hype.Inter. J. Adv. Res. Humanit. Law202412505710.63053/ijrel.11
    [Google Scholar]
  15. RezaeianO. BayrakA.E. AsanO. An Architecture to Support Graduated Levels of Trust for Cancer Diagnosis with AI. HCI International 2024 Posters.ChamSpringer Nature Switzerland2024
    [Google Scholar]
  16. TekinA. JoghataeeM. RovatiL. TruongH. Castillo-ZambranoC. KushagraK. NikravangolsefidN. OzkanM. GuptaA. HerasevichV. DomecqJ. O’HoroJ. GajicO. Development and validation of a preliminary multivariable diagnostic model for identifying unusual infections in hospitalized patients.Biomol. Biomed.20242451387139910.17305/bb.2024.1044738643478
    [Google Scholar]
  17. MehrniaM. ElbayumiM. ElbazM.S. Assessing Foundational Medical’Segment Anything’(Med-SAM1, Med-SAM2) Deep Learning Models for Left Atrial Segmentation in 3D LGE MRI.arXiv:2411.05963202416
    [Google Scholar]
  18. LenharoM. An AI revolution is brewing in medicine. What will it look like?Nature2023622798468668810.1038/d41586‑023‑03302‑037875622
    [Google Scholar]
  19. SamalaRK DrukkerK Shukla-DaveA AI and machine learning in medical imaging: Key points from development to translation.BJR Artif. Intell.202411ubae00610.1093/bjrai/ubae006
    [Google Scholar]
  20. KhosraviP. MohammadiS. ZahiriF. KhodarahmiM. ZahiriJ. AI-enhanced detection of clinically relevant structural and functional anomalies in MRI : Traversing the landscape of conventional to explainable approaches.J. Magn. Reson. Imaging20246062272228910.1002/jmri.2924738243677
    [Google Scholar]
  21. NoiaD.C. GristJ.T. RiemerF. LyashevaM. FabozziM. CastelliM. LodiR. TononC. RundoL. ZaccagnaF. Predicting survival in patients with brain tumors: Current state-of-the-art of ai methods applied to mri.Diagnostics2022129212510.3390/diagnostics1209212536140526
    [Google Scholar]
  22. WuN. GerasK.J. ShenY. Breast Density Classification with Deep Convolutional Neural Networks.2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)2018.10.1109/ICASSP.2018.8462671
    [Google Scholar]
  23. FornellD. FDA has now cleared 700 AI healthcare algorithms, more than 76% in radiology.Providence, RI, USAInnovate Healthcare2023
    [Google Scholar]
  24. AI in medical imaging market size expected to reach usd 11.76 billion by.2024Available from: https://www.globenewswire.com/en/news-release/2024/06/24/2903185/0/en/AI-in-Medical-Imaging-Market-Size-Expected-to-Reach-USD-11-76-Billion-By-2033.html [September 13, 2024].
  25. RSNA 2023: How the medical imaging climate is driving accelerated radiology AI adoption.2024Available from: https://www.aidoc.com/learn/blog/rsna-2023-radiology-ai/#:~:text=Providers%20are%20turning%20to%20AI,focus%20on%20AI's%20direct%20impact [cited 2024 September 13, 2024].
  26. McCarthyJ. From here to human-level AI.Artif. Intell.2007171181174118210.1016/j.artint.2007.10.009
    [Google Scholar]
  27. WangS. SummersR.M. Machine learning and radiology.Med. Image Anal.201216593395110.1016/j.media.2012.02.00522465077
    [Google Scholar]
  28. ZouJ. HanY. SoS.S. Overview of artificial neural networks.Methods Mol. Biol.2008458142210.1007/978‑1‑60327‑101‑1_219065803
    [Google Scholar]
  29. RosenblattF. The perceptron: A probabilistic model for information storage and organization in the brain.Psychol. Rev.195865638640810.1037/h004251913602029
    [Google Scholar]
  30. DiederichJ. Artificial Neural Networks: Concept Learning.Los Alamitos, CaliforniaIEEE Computer Society Press1990
    [Google Scholar]
  31. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  32. KrizhevskyA. SutskeverI. HintonG.E. ImageNet classification with deep convolutional neural networks.Commun. ACM2017606849010.1145/3065386
    [Google Scholar]
  33. YamashitaR. NishioM. DoR.K.G. TogashiK. Convolutional neural networks: An overview and application in radiology.Insights Imaging20189461162910.1007/s13244‑018‑0639‑929934920
    [Google Scholar]
  34. CaiL. GaoJ. ZhaoD. A review of the application of deep learning in medical image classification and segmentation.Ann. Transl. Med.202081171310.21037/atm.2020.02.4432617333
    [Google Scholar]
  35. AlhasanA.S. Clinical applications of artificial intelligence, machine learning, and deep learning in the imaging of gliomas: A systematic review.Cureus20211311e1958010.7759/cureus.1958034926051
    [Google Scholar]
  36. WangS. SuZ. YingL. PengX. ZhuS. LiangF. FengD. LiangD. Accelerating magnetic resonance imaging via deep learning.Proc. IEEE Int. Symp. Biomed. Imaging2016201651451710.1109/ISBI.2016.749332031709031
    [Google Scholar]
  37. ShimronE. PerlmanO. AI in MRI: Computational frameworks for a faster, optimized, and automated imaging workflow.Bioengineering202310449210.3390/bioengineering1004049237106679
    [Google Scholar]
  38. Yepes-CalderonF. NelsonM.D. McCombJ.G. Automatically measuring brain ventricular volume within PACS using artificial intelligence.PLoS One2018133e019315210.1371/journal.pone.019315229543817
    [Google Scholar]
  39. ZhangZ. SeeramE. The use of artificial intelligence in computed tomography image reconstruction - A literature review.J. Med. Imaging Radiat. Sci.202051467167710.1016/j.jmir.2020.09.00132981888
    [Google Scholar]
  40. AhmadN. StrandR. SparresäterB. TaraiS. LundströmE. BergströmG. AhlströmH. KullbergJ. Automatic segmentation of large-scale CT image datasets for detailed body composition analysis.BMC Bioinformatics202324134610.1186/s12859‑023‑05462‑237723444
    [Google Scholar]
  41. FazalM.I. PatelM.E. TyeJ. GuptaY. The past, present and future role of artificial intelligence in imaging.Eur. J. Radiol.201810524625010.1016/j.ejrad.2018.06.02030017288
    [Google Scholar]
  42. Letourneau-GuillonL. CamirandD. GuilbertF. ForghaniR. Artificial intelligence applications for workflow, process optimization and predictive analytics.Neuroimaging Clin. N. Am.2020304e1e1510.1016/j.nic.2020.08.00833039002
    [Google Scholar]
  43. BizzoB.C. AlmeidaR.R. AlkasabT.K. Data management in artificial intelligence–assisted radiology reporting.J. Am. Coll. Radiol.202118111485148810.1016/j.jacr.2021.09.01734624236
    [Google Scholar]
  44. JuluruK. ShihH.H. MurthyK.K.N. ElnajjarP. El-RowmeimA. RothC. GenereauxB. FoxJ. SiegelE. RubinD.L. Integrating AL algorithms into the clinical workflow.Radiol. Artif. Intell.202136e21001310.1148/ryai.202121001334870216
    [Google Scholar]
  45. Gutiérrez-MartínezJ. Núñez-GaonaM.A. Aguirre-MenesesH. Delgado-EsquerraR.E. A software and hardware architecture for a high-availability PACS.J. Digit. Imaging201225447147910.1007/s10278‑012‑9494‑222692771
    [Google Scholar]
  46. Information technology - security techniques - information security management systems - requirements.2005Available from: http://www.iso27000.es/iso27000.html [Accessed 25 july 2024].
  47. LiuB.J. ZhouM.Z. DocumetJ. Utilizing data grid architecture for the backup and recovery of clinical image data.Comput. Med. Imaging Graph.2005292-39510210.1016/j.compmedimag.2004.09.00415755529
    [Google Scholar]
  48. JungH. KimH.J. KangW.S. LeeS.H. KimS.R. JiC.L. KimJ.H. YooS.K. KimK.H. Migration of medical image data archived using mini-PACS to full-PACS.J. Digit. Imaging200417210010810.1007/s10278‑004‑1004‑815085447
    [Google Scholar]
  49. Department of Health and Human Services nd. Guidance on risk analysis requirements under the HIPAA security rule.Available from: https://www.hhs.gov/hipaa/for-professionals/security/guidance/guidance-risk-analysis/index.html [30 July 2024].
  50. CannataciJ.A. Legal aspects of picture archiving and communications systems.Int. J. Biomed. Comput.1992303-420921410.1016/0020‑7101(92)90023‑L1634265
    [Google Scholar]
  51. Guidance for the submission of premarket notifications for medical image management devices.2000Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-submission-premarket-notifications-emission-computed-tomography-devices-and-accessories
  52. Gutiérrez-MartínezJ. Núñez-GaonaM.A. Aguirre-MenesesH. Business model for the security of a large-scale PACS, compliance with ISO/27002:2013 standard.J. Digit. Imaging201528448149110.1007/s10278‑014‑9746‑425634674
    [Google Scholar]
  53. EricksonB.J. KitamuraF. Magician’s Corner: 8: How to Connect an Artificial Intelligence Tool to PACS.Radiol. Artif. Intell.202131e20010510.1148/ryai.202120010533937854
    [Google Scholar]
  54. Radiological_Society_of_North_America. The RSNA Imaging AI Certificate Program. Oak Brook, IL, USA: RSNA2024Available from: https://www.rsna.org/ai-certificate
  55. The RSNA imaging AI certificate program.2024Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666990024000132 [cited 2024 October 02, 2024].
  56. NajjarR. Redefining radiology: A review of artificial intelligence integration in medical imaging.Diagnostics20231317276010.3390/diagnostics1317276037685300
    [Google Scholar]
  57. LeeS. ShinH.J. KimS. KimE.K. Successful implementation of an artificial intelligence-based computer-aided detection system for chest radiography in daily clinical practice.Korean J. Radiol.202223984785210.3348/kjr.2022.019335762186
    [Google Scholar]
  58. JorgT. HalfmannM.C. StoehrF. ArnholdG. TheobaldA. MildenbergerP. MüllerL. A novel reporting workflow for automated integration of artificial intelligence results into structured radiology reports.Insights Imaging20241518010.1186/s13244‑024‑01660‑538502298
    [Google Scholar]
  59. GinatD. Implementation of machine learning software on the radiology worklist decreases scan view delay for the detection of intracranial hemorrhage on CT.Brain Sci.202111783210.3390/brainsci1107083234201775
    [Google Scholar]
  60. ZaazoueK.A. McCannM.R. AhmedA.K. CortopassiI.O. ErbenY.M. LittleB.P. StowellJ.T. ToskichB.B. RitchieC.A. Evaluating the performance of a commercially available artificial intelligence algorithm for automated detection of pulmonary embolism on contrast-enhanced computed tomography and computed tomography pulmonary angiography in patients with coronavirus disease 2019.Mayo Clin. Proc. Innov. Qual. Outcomes20237314315210.1016/j.mayocpiqo.2023.03.00137020901
    [Google Scholar]
  61. GollaA.K. LorenzC. BuergerC. LossauT. KlinderT. MutzeS. ArndtH. SpohnF. MittmannM. GoelzL. Cervical spine fracture detection in computed tomography using convolutional neural networks.Phys. Med. Biol.2023681111501010.1088/1361‑6560/acd48b37167980
    [Google Scholar]
  62. KundischA. HönningA. MutzeS. KreisslL. SpohnF. LemckeJ. SitzM. SparenbergP. GoelzL. Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies.PLoS One20211611e026056010.1371/journal.pone.026056034843559
    [Google Scholar]
  63. HamdZY OE AlorainyAI AlqahtaniAF AlshammariNR BajamalO The role of machine learning in detecting primary brain tumors in Saudi pediatric patients through MRI images.J. Rad. Res. Appl. Sci.202417310095610.1016/j.jrras.2024.100956
    [Google Scholar]
  64. PatilV.M.M. KiranA. Early prediction of Alzheimer’s disease using convolutional neural network: A review.Egypt J Neurol Psychiatry Neurosurg202258
    [Google Scholar]
  65. GorensteinL. KonenE. GreenM. KlangE. Bidirectional encoder representations from transformers in radiology: A systematic review of natural language processing applications.J. Am. Coll. Radiol.202421691494110.1016/j.jacr.2024.01.01238302036
    [Google Scholar]
  66. CaseyA. DavidsonE. PoonM. DongH. DumaD. GrivasA. GroverC. Suárez-PaniaguaV. TobinR. WhiteleyW. WuH. AlexB. A systematic review of natural language processing applied to radiology reports.BMC Med. Inform. Decis. Mak.202121117910.1186/s12911‑021‑01533‑734082729
    [Google Scholar]
  67. SkwirczyńskiM. TaborZ. LasekJ. SchneiderZ. GibałaS. KucybałaI. UrbanikA. ObuchowiczR. Deep learning algorithm for differentiating patients with a healthy liver from patients with liver lesions based on mr images.Cancers20231512314210.3390/cancers1512314237370752
    [Google Scholar]
  68. RaspeJ. HarderF.N. RuppS. McTavishS. PeetersJ.M. WeissK. MakowskiM.R. BrarenR.F. KarampinosD.C. VanA.T. Retrospective motion artifact reduction by spatial scaling of liver diffusion-weighted images.Tomography2023951839185610.3390/tomography905014637888738
    [Google Scholar]
  69. AnabyD. ShavinD. Zimmerman-MorenoG. NissanN. FriedmanE. Sklair-LevyM. ‘Earlier than early’ detection of breast cancer in israeli BRCA mutation carriers applying ai-based analysis to consecutive MRI scans.Cancers20231512312010.3390/cancers1512312037370730
    [Google Scholar]
  70. KodeH. BarkanaB.D. Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images.Cancers20231512307510.3390/cancers1512307537370687
    [Google Scholar]
  71. ShanmugamK. RajaguruH. Exploration and enhancement of classifiers in the detection of lung cancer from histopathological images.Diagnostics20231320328910.3390/diagnostics1320328937892110
    [Google Scholar]
  72. LeeC.C. SoE.C. SaidyL. WangM.J. Lung field segmentation in chest x-ray images using superpixel resizing and encoder–decoder segmentation networks.Bioengineering20229835110.3390/bioengineering908035136004876
    [Google Scholar]
  73. RodriguesN.M. SilvaS. VanneschiL. PapanikolaouN. A comparative study of automated deep learning segmentation models for prostate MRI.Cancers2023155146710.3390/cancers1505146736900261
    [Google Scholar]
  74. BuserM.A.D. SteegD.V.A.F.W. WijnenM.H.W.A. FitskiM. TinterenV.H. den Heuvel-EibrinkV.M.M. LittooijA.S. VeldenD.V.B.H.M. Radiologic versus segmentation measurements to quantify wilms tumor volume on mri in pediatric patients.Cancers2023157211510.3390/cancers1507211537046776
    [Google Scholar]
  75. PerettiL. DonatelliG. CenciniM. CecchiP. BuonincontriG. CosottiniM. TosettiM. CostagliM. Generating synthetic radiological images with pysynthMRI: An open-source cross-platform tool.Tomography2023951723173310.3390/tomography905013737736990
    [Google Scholar]
  76. NadkarniR. ClarkD.P. AllphinA.J. BadeaC.T. A deep learning approach for rapid and generalizable denoising of photon-counting micro-CT images.Tomography2023941286130210.3390/tomography904010237489470
    [Google Scholar]
  77. ValatE. FarrahiK. BlumensathT. Sinogram inpainting with generative adversarial networks and shape priors.Tomography2023931137115210.3390/tomography903009437368546
    [Google Scholar]
  78. TsuboyamaT. YanagawaM. FujiokaT. FujitaS. UedaD. ItoR. YamadaA. FushimiY. TatsugamiF. NakauraT. NozakiT. KamagataK. MatsuiY. HirataK. FujimaN. KawamuraM. NaganawaS. Recent trends in AI applications for pelvic MRI: A comprehensive review.Radiol. Med.202412991275128710.1007/s11547‑024‑01861‑439096356
    [Google Scholar]
  79. LeiK. SyedA.B. ZhuX. PaulyJ.M. VasanawalaS.V. Automated MRI field of view prescription from region of interest prediction by intra-stack attention neural network.Bioengineering20231019210.3390/bioengineering1001009236671663
    [Google Scholar]
  80. HausmannD. LerchA. HitzigerS. FarkasM. WeilandE. LemkeA. GrimmM. Kubik-HuchR.A. AI-supported autonomous uterus reconstructions: First application in MRI using 3D SPACE with iterative denoising.Acad. Radiol.20243141400140910.1016/j.acra.2023.09.03537925344
    [Google Scholar]
  81. TsuboyamaT. OnishiH. NakamotoA. OgawaK. KoyamaY. TarewakiH. TomiyamaN. Impact of deep learning reconstruction combined with a sharpening filter on single-shot fast spin-echo t2-weighted magnetic resonance imaging of the uterus.Invest. Radiol.202257637938610.1097/RLI.000000000000084734999668
    [Google Scholar]
  82. YangR. ZouY. LiuW.V. LiuC. WenZ. LiL. SunC. HuM. ZhaY. High-resolution single-shot fast spin-echo MR imaging with deep learning reconstruction algorithm can improve repeatability and reproducibility of follicle counting.J. Clin. Med.2023129323410.3390/jcm1209323437176674
    [Google Scholar]
  83. RenJ. LiY. LiuF.S. LiuC. ZhuJ.X. NickelM.D. WangX.Y. LiuX.Y. ZhaoJ. HeY.L. JinZ.Y. XueH.D. Comparison of a deep learning-accelerated T2-weighted turbo spin echo sequence and its conventional counterpart for female pelvic MRI: Reduced acquisition times and improved image quality.Insights Imaging202213119310.1186/s13244‑022‑01321‑536512158
    [Google Scholar]
  84. LeeE.J. HwangJ. ParkS. BaeS.H. LimJ. ChangY.W. HongS.S. OhE. NamB.D. JeongJ. SungJ.K. NickelD. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: A multi-reader study.Eur. Radiol.202333117697770610.1007/s00330‑023‑09781‑z37314472
    [Google Scholar]
  85. AlisD. KartalM.S. SekerM.E. GurozB. BasarY. ArslanA. SiroluS. KurtcanS. DenizogluN. TuzunU. YildirimD. OksuzI. KaraarslanE. Deep learning for assessing image quality in bi-parametric prostate MRI: A feasibility study.Eur. J. Radiol.202316511092410.1016/j.ejrad.2023.11092437354768
    [Google Scholar]
  86. ThijssenL.C.P. RooijD.M. BarentszJ.O. HuismanH.J. Radiomics based automated quality assessment for T2W prostate MR images.Eur. J. Radiol.202316511092810.1016/j.ejrad.2023.11092837354769
    [Google Scholar]
  87. GagoskiB. XuJ. WightonP. TisdallM.D. FrostR. LoW.C. GollandP. KouweD.V.A. AdalsteinssonE. GrantP.E. Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T.Magn. Reson. Med.20228741914192210.1002/mrm.2910634888942
    [Google Scholar]
  88. LeeK.L. KesslerD.A. DezonieS. ChishayaW. ShepherdC. CarmoB. GravesM.J. BarrettT. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality.Eur. J. Radiol.202316611101710.1016/j.ejrad.2023.11101737541181
    [Google Scholar]
  89. UrsprungS. HerrmannJ. JoosN. WeilandE. BenkertT. AlmansourH. LinggA. AfatS. GassenmaierS. Accelerated diffusion-weighted imaging of the prostate using deep learning image reconstruction: A retrospective comparison with standard diffusion-weighted imaging.Eur. J. Radiol.202316511095310.1016/j.ejrad.2023.11095337399667
    [Google Scholar]
  90. TongA. BaggaB. PetrocelliR. SmerekaP. VijA. QianK. GrimmR. KamenA. KeerthivasanM.B. NickelM.D. BuschV.H. ChandaranaH. Comparison of a deep learning-accelerated vs. conventional T2 -weighted sequence in biparametric MRI of the prostate.J. Magn. Reson. Imaging20235841055106410.1002/jmri.2860236651358
    [Google Scholar]
  91. UedaD. KakinumaT. FujitaS. KamagataK. FushimiY. ItoR. MatsuiY. NozakiT. NakauraT. FujimaN. TatsugamiF. YanagawaM. HirataK. YamadaA. TsuboyamaT. KawamuraM. FujiokaT. NaganawaS. Fairness of artificial intelligence in healthcare: Review and recommendations.Jpn. J. Radiol.202442131510.1007/s11604‑023‑01474‑337540463
    [Google Scholar]
  92. HigakiT. NakamuraY. TatsugamiF. NakauraT. AwaiK. Improvement of image quality at CT and MRI using deep learning.Jpn. J. Radiol.2019371738010.1007/s11604‑018‑0796‑230498876
    [Google Scholar]
  93. CipollariS. GuarrasiV. PecoraroM. BicchettiM. MessinaE. FarinaL. PaciP. CatalanoC. PanebiancoV. Convolutional neural networks for automated classification of prostate multiparametric magnetic resonance imaging based on image quality.J. Magn. Reson. Imaging202255248049010.1002/jmri.2787934374181
    [Google Scholar]
  94. WatanabeM. TaguchiS. MachidaH. TamboM. TakeshitaY. KariyasuT. FukushimaK. ShimizuY. OkegawaT. FukuharaH. YokoyamaK. Clinical validity of non-contrast-enhanced VI-RADS: Prospective study using 3-T MRI with high-gradient magnetic field.Eur. Radiol.202232117513752110.1007/s00330‑022‑08813‑435554648
    [Google Scholar]
  95. WingerchukD.M. BanwellB. BennettJ.L. CabreP. CarrollW. ChitnisT. SezeD.J. FujiharaK. GreenbergB. JacobA. JariusS. Lana-PeixotoM. LevyM. SimonJ.H. TenembaumS. TraboulseeA.L. WatersP. WellikK.E. WeinshenkerB.G. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.Neurology201585217718910.1212/WNL.000000000000172926092914
    [Google Scholar]
  96. ThompsonA.J. BanwellB.L. BarkhofF. CarrollW.M. CoetzeeT. ComiG. CorrealeJ. FazekasF. FilippiM. FreedmanM.S. FujiharaK. GalettaS.L. HartungH.P. KapposL. LublinF.D. MarrieR.A. MillerA.E. MillerD.H. MontalbanX. MowryE.M. SorensenP.S. TintoréM. TraboulseeA.L. TrojanoM. UitdehaagB.M.J. VukusicS. WaubantE. WeinshenkerB.G. ReingoldS.C. CohenJ.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.Lancet Neurol.201817216217310.1016/S1474‑4422(17)30470‑229275977
    [Google Scholar]
  97. MatthewsL. MarascoR. JenkinsonM. KükerW. LuppeS. LeiteM.I. GiorgioA. StefanoD.N. RobertsonN. Johansen-BergH. EvangelouN. PalaceJ. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution.Neurology201380141330133710.1212/WNL.0b013e318288795723486868
    [Google Scholar]
  98. KimH. LeeY. KimY.H. LimY.M. LeeJ.S. WooJ. JangS.K. OhY.J. KimH.W. LeeE.J. KangD.W. KimK.K. Deep learning-based method to differentiate neuromyelitis optica spectrum disorder from multiple sclerosis.Front. Neurol.20201159904210.3389/fneur.2020.59904233329357
    [Google Scholar]
  99. EtemadifarM. NorouziM. AlaeiS.A. KarimiR. SalariM. The diagnostic performance of AI-based algorithms to discriminate between NMOSD and MS using MRI features: A systematic review and meta-analysis.Mult. Scler. Relat. Disord.20248710568210.1016/j.msard.2024.10568238781885
    [Google Scholar]
  100. CorteseR. BattagliniM. PradosF. BianchiA. HaiderL. JacobA. PalaceJ. MessinaS. PaulF. WuerfelJ. MarignierR. Durand-DubiefF. RimkusM.D.C. CallegaroD. SatoD.K. FilippiM. RoccaM.A. CacciaguerraL. RoviraA. Sastre-GarrigaJ. ArrambideG. LiuY. DuanY. GasperiniC. TortorellaC. RuggieriS. AmatoM.P. UlivelliM. GroppaS. GrotheM. LlufriuS. SepulvedaM. LukasC. BellenbergB. SchneiderR. SowaP. CeliusE.G. ProebstelA.K. YaldizliÖ. MüllerJ. StankoffB. BodiniB. CarmiscianoL. SormaniM.P. BarkhofF. StefanoD.N. CiccarelliO. BarkhofF. StefanoD.N. Sastre-GarrigaJ. CiccarelliO. EnzingerC. FilippiM. GasperiniC. KapposL. PalaceJ. VrenkenH. RoviraÀ. RoccaM.A. YousryT. Clinical and MRI measures to identify non-acute MOG-antibody disease in adults.Brain202314662489250110.1093/brain/awac48036515653
    [Google Scholar]
  101. KimH.J. PaulF. Lana-PeixotoM.A. TenembaumS. AsgariN. PalaceJ. KlawiterE.C. SatoD.K. SezeD.J. WuerfelJ. BanwellB.L. VillosladaP. SaizA. FujiharaK. KimS.H. PaulF. WuerfelJ. CabreP. MarignierR. SezeD.J. TedderT. GarrahanJ.P. TenembaumS. PeltV.D. BroadleyS. SaizA. VillosladaP. LevyM. ChitnisT. KlawiterE.C. WingerchukD. KimH.J. PanditL. KisterI. LeiteM.I. PalaceJ. ApiwattanakulM. KleiterI. PrayoonwiwatN. HanM. HellwigK. BanwellB. HerleV.K. BehneJ. JohnG. HooperD.C. FujiharaK. NakashimaI. SatoD. TraboulseeA. YeamanM.R. WaubantE. ZamvilS. BennettJ. Lana-PeixotoM. GreenbergB. StuveO. AktasO. WuerfelJ. SmithT.J. AsgariN. JacobA. O’ConnorK. MRI characteristics of neuromyelitis optica spectrum disorder.Neurology201584111165117310.1212/WNL.000000000000136725695963
    [Google Scholar]
  102. HuangJ. XinB. WangX. QiZ. DongH. LiK. ZhouY. LuJ. Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases.J. Transl. Med.202119137710.1186/s12967‑021‑03015‑w34488799
    [Google Scholar]
  103. TaylorC.R. MongaN. JohnsonC. HawleyJ.R. PatelM. Artificial intelligence applications in breast imaging: Current status and future directions.Diagnostics20231312204110.3390/diagnostics1312204137370936
    [Google Scholar]
  104. McKinneyS.M. SieniekM. GodboleV. GodwinJ. AntropovaN. AshrafianH. BackT. ChesusM. CorradoG.S. DarziA. EtemadiM. Garcia-VicenteF. GilbertF.J. Halling-BrownM. HassabisD. JansenS. KarthikesalingamA. KellyC.J. KingD. LedsamJ.R. MelnickD. MostofiH. PengL. ReicherJ.J. Romera-ParedesB. SidebottomR. SuleymanM. TseD. YoungK.C. FauwD.J. ShettyS. International evaluation of an AI system for breast cancer screening.Nature20205777788899410.1038/s41586‑019‑1799‑631894144
    [Google Scholar]
  105. SalimM. WåhlinE. DembrowerK. AzavedoE. FoukakisT. LiuY. SmithK. EklundM. StrandF. External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms.JAMA Oncol.20206101581158810.1001/jamaoncol.2020.332132852536
    [Google Scholar]
  106. Romero-MartínS. Elías-CabotE. Raya-PovedanoJ.L. Gubern-MéridaA. Rodríguez-RuizA. Álvarez-BenitoM. Stand-alone use of artificial intelligence for digital mammography and digital breast tomosynthesis screening: A retrospective evaluation.Radiology2022302353554210.1148/radiol.21159034904872
    [Google Scholar]
  107. MagniV. InterlenghiM. CozziA. AlìM. SalvatoreC. AzzenaA.A. CapraD. CarrieroS. PepaD.G. FazziniD. GranataG. MontiC.B. MuscogiuriG. PellegrinoG. SchiaffinoS. CastiglioniI. PapaS. SardanelliF. Development and validation of an AI-driven mammographic breast density classification tool based on radiologist consensus.Radiol. Artif. Intell.202242e21019910.1148/ryai.21019935391766
    [Google Scholar]
  108. LiangX. YuX. GaoT. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis.Eur. J. Radiol.202215011024710.1016/j.ejrad.2022.11024735290910
    [Google Scholar]
  109. VriesD.C.F. ColosimoS.J. StaffR.T. DymiterJ.A. YearsleyJ. DinneenD. BoyleM. HarrisonD.J. AndersonL.A. LipG. BlackC. MurrayA.D. WildeK. BlackwoodJ.D. ButterlyC. ZurowskiJ. EilbeckJ. McSkimmingC. Impact of different mammography systems on artificial intelligence performance in breast cancer screening.Radiol. Artif. Intell.202353e22014610.1148/ryai.22014637293340
    [Google Scholar]
  110. KhosraviP. SchweitzerM. Artificial intelligence in neuroradiology: A scoping review of some ethical challenges.Frontiers in Radiology20233114946110.3389/fradi.2023.114946137492387
    [Google Scholar]
  111. UllmanS. Using neuroscience to develop artificial intelligence.Science2019363642869269310.1126/science.aau659530765552
    [Google Scholar]
  112. WhiteT. BlokE. CalhounV.D. Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed.Hum. Brain Mapp.202243127829110.1002/hbm.2512032621651
    [Google Scholar]
  113. HarrisT.L. WyndhamJ.M. Data rights and responsibilities.J. Empir. Res. Hum. Res. Ethics201510333433710.1177/155626461559155826297755
    [Google Scholar]
  114. McGuireA.L. MajumderM.A. VillanuevaA.G. BardillJ. BollingerJ.M. BoerwinkleE. BubelaT. DeverkaP.A. EvansB.J. GarrisonN.A. GlazerD. GoldsteinM.M. GreelyH.T. KahnS.D. KnoppersB.M. KoenigB.A. LambrightJ.M. MattisonJ.E. O’DonnellC. RaiA.K. RodriguezL.L. SimoncelliT. TerryS.F. ThorogoodA.M. WatsonM.S. WilbanksJ.T. Cook-DeeganR. Importance of participant-centricity and trust for a sustainable medical information commons.J. Law Med. Ethics2019471122010.1177/107311051984048030994067
    [Google Scholar]
  115. WilleminkM.J. KoszekW.A. HardellC. WuJ. FleischmannD. HarveyH. FolioL.R. SummersR.M. RubinD.L. LungrenM.P. Preparing medical imaging data for machine learning.Radiology2020295141510.1148/radiol.202019222432068507
    [Google Scholar]
  116. Artificial intelligence and medical imaging 2018: French Radiology Community white paper.Diagn. Interv. Imaging2018991172774210.1016/j.diii.2018.10.00330470627
    [Google Scholar]
  117. ChingT. HimmelsteinD.S. Beaulieu-JonesB.K. KalininA.A. DoB.T. WayG.P. FerreroE. AgapowP.M. ZietzM. HoffmanM.M. XieW. RosenG.L. LengerichB.J. IsraeliJ. LanchantinJ. WoloszynekS. CarpenterA.E. ShrikumarA. XuJ. CoferE.M. LavenderC.A. TuragaS.C. AlexandariA.M. LuZ. HarrisD.J. DeCaprioD. QiY. KundajeA. PengY. WileyL.K. SeglerM.H.S. BocaS.M. SwamidassS.J. HuangA. GitterA. GreeneC.S. Opportunities and obstacles for deep learning in biology and medicine.J. R. Soc. Interface2018151412017038710.1098/rsif.2017.038729618526
    [Google Scholar]
  118. SendersJ.T. ZakiM.M. KarhadeA.V. ChangB. GormleyW.B. BroekmanM.L. SmithT.R. ArnaoutO. An introduction and overview of machine learning in neurosurgical care.Acta Neurochir.20181601293810.1007/s00701‑017‑3385‑829134342
    [Google Scholar]
  119. DasS. NayakG.K. SabaL. KalraM. SuriJ.S. SaxenaS. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review.Comput. Biol. Med.202214310527310.1016/j.compbiomed.2022.10527335228172
    [Google Scholar]
  120. CharD.S. ShahN.H. MagnusD. Implementing machine learning in health care — addressing ethical challenges.N. Engl. J. Med.20183781198198310.1056/NEJMp171422929539284
    [Google Scholar]
  121. HowardA. BorensteinJ. The ugly truth about ourselves and our robot creations: The problem of bias and social inequity.Sci. Eng. Ethics20182451521153610.1007/s11948‑017‑9975‑228936795
    [Google Scholar]
  122. Akinci D’AntonoliT. Ethical considerations for artificial intelligence: An overview of the current radiology landscape.Diagn. Interv. Radiol.202026550451110.5152/dir.2020.1927932755879
    [Google Scholar]
  123. GeisJ.R. BradyA.P. WuC.C. SpencerJ. RanschaertE. JaremkoJ.L. LangerS.G. KittsA.B. BirchJ. ShieldsW.F. GenderenD.H.V.V.R. KotterE. GichoyaJ.W. CookT.S. MorganM.B. TangA. SafdarN.M. KohliM. Ethics of artificial intelligence in radiology: Summary of the joint european and north american multisociety statement.Can. Assoc. Radiol. J.201970432933410.1016/j.carj.2019.08.01031585825
    [Google Scholar]
  124. LuxtonD.D. Recommendations for the ethical use and design of artificial intelligent care providers.Artif. Intell. Med.201462111010.1016/j.artmed.2014.06.00425059820
    [Google Scholar]
  125. BalthazarP. HarriP. PraterA. SafdarN.M. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics.J. Am. Coll. Radiol.201815358058610.1016/j.jacr.2017.11.03529402532
    [Google Scholar]
  126. YusteR. GoeringS. ArcasB.A. BiG. CarmenaJ.M. CarterA. FinsJ.J. FriesenP. GallantJ. HugginsJ.E. IllesJ. KellmeyerP. KleinE. MarblestoneA. MitchellC. ParensE. PhamM. RubelA. SadatoN. SullivanL.S. TeicherM. WassermanD. WexlerA. WhittakerM. WolpawJ. Four ethical priorities for neurotechnologies and AI.Nature2017551767915916310.1038/551159a29120438
    [Google Scholar]
  127. O’BrolcháinF. Robots and people with dementia: Unintended consequences and moral hazard.Nurs. Ethics201926496297210.1177/096973301774296029262739
    [Google Scholar]
  128. NazirM.I. AkterA. WadudH.M.A. UddinM.A. Utilizing customized CNN for brain tumor prediction with explainable AI.Heliyon20241020e3899710.1016/j.heliyon.2024.e3899739449697
    [Google Scholar]
  129. LombardoE. DhontJ. PageD. GaribaldiC. KünzelL.A. HurkmansC. TijssenR.H.N. PaganelliC. LiuP.Z.Y. KeallP.J. RiboldiM. KurzC. LandryG. CusumanoD. FusellaM. PlacidiL. Real-time motion management in MRI-guided radiotherapy: Current status and AI-enabled prospects.Radiother. Oncol.202419010997010.1016/j.radonc.2023.10997037898437
    [Google Scholar]
  130. RaaymakersB.W. Jürgenliemk-SchulzI.M. BolG.H. GlitznerM. KotteA.N.T.J. AsselenV.B. BoerD.J.C.J. BlueminkJ.J. HackettS.L. MoerlandM.A. WoodingsS.J. WolthausJ.W.H. ZijpV.H.M. PhilippensM.E.P. TijssenR. KokJ.G.M. Groot-van BreugelD.E.N. KiekeboschI. MeijersL.T.C. NomdenC.N. SikkesG.G. DoornaertP A H. EppingaW.S.C. KaspertsN. KerkmeijerL.G.W. TersteegJ.H.A. BrownK.J. PaisB. WoodheadP. LagendijkJ.J.W. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment.Phys. Med. Biol.20176223L41L5010.1088/1361‑6560/aa951729135471
    [Google Scholar]
  131. CusumanoD. DhontJ. BoldriniL. ChiloiroG. TeodoliS. MassaccesiM. FiondaB. CelliniF. AzarioL. VandemeulebrouckeJ. SpiritoD.M. ValentiniV. VerellenD. Predicting tumour motion during the whole radiotherapy treatment: A systematic approach for thoracic and abdominal lesions based on real time MR.Radiother. Oncol.2018129345646210.1016/j.radonc.2018.07.02530144955
    [Google Scholar]
  132. CusumanoD. BoldriniL. DhontJ. FiorinoC. GreenO. GüngörG. JornetN. KlüterS. LandryG. MattiucciG.C. PlacidiL. ReynaertN. RuggieriR. Tanadini-LangS. ThorwarthD. YadavP. YangY. ValentiniV. VerellenD. IndovinaL. Artificial intelligence in magnetic resonance guided radiotherapy: Medical and physical considerations on state of art and future perspectives.Phys. Med.20218517519110.1016/j.ejmp.2021.05.01034022660
    [Google Scholar]
  133. TripathiP.C. BagS. Segmentation of brain magnetic resonance images using a novel fuzzy clustering based method.IET Image Process.202014153705371710.1049/iet‑ipr.2020.0383
    [Google Scholar]
  134. RamdlonR.H. KusumaningtyasE.M. KarlitaT. Brain Tumor Classification Using MRI Images with K-Nearest Neighbor Method.2019 International Electronics Symposium (IES)2019.10.1109/ELECSYM.2019.8901560
    [Google Scholar]
  135. HaqE.U. JianjunH. HuarongX. LiK. WengL. A hybrid approach based on deep cnn and machine learning classifiers for the tumor segmentation and classification in brain MRI.Comput. Math. Methods Med.2022202211810.1155/2022/644668036035291
    [Google Scholar]
  136. IrmakE. Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework.Iran. J. Sci. Technol. Trans. Electr. Eng.20214531015103610.1007/s40998‑021‑00426‑9
    [Google Scholar]
  137. LiuS. MasurkarA.V. RusinekH. ChenJ. ZhangB. ZhuW. Fernandez-GrandaC. RazavianN. Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs.Sci. Rep.20221211710610.1038/s41598‑022‑20674‑x36253382
    [Google Scholar]
  138. HossainT. ShishirF.S. AshrafM. NasimM.A.A. ShahM.F. Brain tumor detection using convolutional neural network.2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)2019, pp. 1-6.
    [Google Scholar]
  139. ChelghoumR. IkhlefA. HameurlaineA. JacquirS. Transfer learning using convolutional neural network architectures for brain tumor classification from MRI images.IFIP Adv. Inf. Commun. Technol.202058318920010.1007/978‑3‑030‑49161‑1_17
    [Google Scholar]
  140. BarrettT. RooijD.M. GigantiF. AllenC. BarentszJ.O. PadhaniA.R. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway.Nat. Rev. Urol.202320192210.1038/s41585‑022‑00648‑436168056
    [Google Scholar]
  141. GigantiF. KirkhamA. KasivisvanathanV. PapoutsakiM.V. PunwaniS. EmbertonM. MooreC.M. AllenC. Understanding PI-QUAL for prostate MRI quality: A practical primer for radiologists.Insights Imaging20211215910.1186/s13244‑021‑00996‑633932167
    [Google Scholar]
  142. GiannariniG. ValottoC. GiromettiR. MoroD.F. BrigantiA. PadhaniA.R. Measuring the quality of diagnostic prostate magnetic resonance imaging: A urologist’s perspective.Eur. Urol.202179444044110.1016/j.eururo.2020.09.01532951929
    [Google Scholar]
  143. RouvièreO. PuechP. Renard-PennaR. ClaudonM. RoyC. Mège-LechevallierF. Decaussin-PetrucciM. Dubreuil-ChambardelM. MagaudL. RemontetL. RuffionA. ColombelM. CrouzetS. SchottA.M. LemaitreL. RabilloudM. GrenierN. DelongchampsB.N. BoutierR. BratanF. BrunelleS. CamparoP. ColinP. CorréasJ-M. CornélisF. CornudF. CrosF. DescotesJ-L. EschwegeP. FiardG. FendlerJ-P. HabchiH. HallouinP. KhairouneA. LangH. LebrasY. LefèvreF. MalavaudB. MoldovanP.C. MottetN. MozerP. NevouxP. PagnouxG. PasticierG. PortalezD. PotironE. ThammavongA.S. TimsitM-O. VillerA. WalzJ. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): A prospective, multicentre, paired diagnostic study.Lancet Oncol.201920110010910.1016/S1470‑2045(18)30569‑230470502
    [Google Scholar]
  144. GigantiF. AllenC. EmbertonM. MooreC.M. KasivisvanathanV. Prostate imaging quality (PI-QUAL): A new quality control scoring system for multiparametric magnetic resonance imaging of the prostate from the precision trial.Eur. Urol. Oncol.20203561561910.1016/j.euo.2020.06.00732646850
    [Google Scholar]
  145. KohD.M. CollinsD.J. Diffusion-weighted MRI in the body: Applications and challenges in oncology.AJR Am. J. Roentgenol.200718861622163510.2214/AJR.06.140317515386
    [Google Scholar]
  146. TürkbeyB. ThomassonD. PangY. BernardoM. ChoykeP.L. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment.Diagn. Interv. Radiol.201016318619219885783
    [Google Scholar]
  147. LiH. LeeC.H. ChiaD. LinZ. HuangW. TanC.H. Machine learning in prostate mri for prostate cancer: Current status and future opportunities.Diagnostics202212228910.3390/diagnostics1202028935204380
    [Google Scholar]
  148. LeakeJ.L. HardmanR. OjiliV. ThompsonI. ShanbhogueA. HernandezJ. BarentszJ. Prostate MRI: Access to and current practice of prostate MRI in the United States.J. Am. Coll. Radiol.201411215616010.1016/j.jacr.2013.05.00624389134
    [Google Scholar]
  149. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. DeimlingV.A. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab10634185076
    [Google Scholar]
  150. MillerK.D. OstromQ.T. KruchkoC. PatilN. TihanT. CioffiG. FuchsH.E. WaiteK.A. JemalA. SiegelR.L. Barnholtz-SloanJ.S. Brain and other central nervous system tumor statistics, 2021.CA Cancer J. Clin.202171538140610.3322/caac.2169334427324
    [Google Scholar]
  151. AertsH.J.W.L. VelazquezE.R. LeijenaarR.T.H. ParmarC. GrossmannP. CarvalhoS. BussinkJ. MonshouwerR. Haibe-KainsB. RietveldD. HoebersF. RietbergenM.M. LeemansC.R. DekkerA. QuackenbushJ. GilliesR.J. LambinP. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat. Commun.201451400610.1038/ncomms500624892406
    [Google Scholar]
  152. KimB.S. KimS.T. KimJ.H. SeolH.J. NamD.H. ShinH.J. LeeJ.I. KongD.S. Apparent diffusion coefficient as a predictive biomarker for survival in patients with treatment-naive glioblastoma using quantitative multiparametric magnetic resonance profiling.World Neurosurg.2019122e812e82010.1016/j.wneu.2018.10.15130391622
    [Google Scholar]
  153. NieD. ZhangH. AdeliE. LiuL. ShenD. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients.Med. Image Comput. Comput. Assist. Interv.20169901212220
    [Google Scholar]
  154. PrasannaP. PatelJ. PartoviS. MadabhushiA. TiwariP. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings.Eur. Radiol.201727104188419710.1007/s00330‑016‑4637‑327778090
    [Google Scholar]
  155. KickingerederP. BurthS. WickA. GötzM. EidelO. SchlemmerH.P. Maier-HeinK.H. WickW. BendszusM. RadbruchA. BonekampD. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models.Radiology2016280388088910.1148/radiol.201616084527326665
    [Google Scholar]
  156. MoralesM.A. ManningW.J. NezafatR. Present and future innovations in ai and cardiac MRI.Radiology20243101e23126910.1148/radiol.23126938193835
    [Google Scholar]
  157. LeinerT. RueckertD. SuinesiaputraA. BaeßlerB. NezafatR. IšgumI. YoungA.A. Machine learning in cardiovascular magnetic resonance: Basic concepts and applications.J. Cardiovasc. Magn. Reson.20192116110.1186/s12968‑019‑0575‑y31590664
    [Google Scholar]
  158. BlansitK. RetsonT. MasutaniE. BahramiN. HsiaoA. Deep learning–based prescription of cardiac MRI planes.Radiol. Artif. Intell.201916e18006910.1148/ryai.201918006932090204
    [Google Scholar]
  159. OhtaY. TateishiE. MoritaY. NishiiT. KotokuA. HorinouchiH. FukuyamaM. FukudaT. Optimization of null point in Look-Locker images for myocardial late gadolinium enhancement imaging using deep learning and a smartphone.Eur. Radiol.20233374688469710.1007/s00330‑023‑09465‑836809433
    [Google Scholar]
  160. ChenY. SchonliebC.B. LioP. LeinerT. DragottiP.L. WangG. RueckertD. FirminD. YangG. AI-based reconstruction for fast MRI—A systematic review and meta-analysis.Proc. IEEE2022110222424510.1109/JPROC.2022.3141367
    [Google Scholar]
  161. HauptmannA. ArridgeS. LuckaF. MuthuranguV. SteedenJ.A. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning–proof of concept in congenital heart disease.Magn. Reson. Med.20198121143115610.1002/mrm.2748030194880
    [Google Scholar]
  162. BaesslerB. MannilM. OebelS. MaintzD. AlkadhiH. MankaR. Subacute and chronic left ventricular myocardial scar: Accuracy of texture analysis on nonenhanced cine MR images.Radiology2018286110311210.1148/radiol.201717021328836886
    [Google Scholar]
  163. FahmyA.S. RowinE.J. JaafarN. ChanR.H. RodriguezJ. NakamoriS. NgoL.H. PradellaS. ZocchiC. OlivottoI. ManningW.J. MaronM. NezafatR. Radiomics of late gadolinium enhancement reveals prognostic value of myocardial scar heterogeneity in hypertrophic cardiomyopathy.JACC Cardiovasc. Imaging2024171162710.1016/j.jcmg.2023.05.00337354155
    [Google Scholar]
  164. YuA.C. MohajerB. EngJ. External validation of deep learning algorithms for radiologic diagnosis: A systematic review.Radiol. Artif. Intell.202243e21006410.1148/ryai.21006435652114
    [Google Scholar]
  165. QuerG. ArnaoutR. HenneM. ArnaoutR. Machine learning and the future of cardiovascular care.J. Am. Coll. Cardiol.202177330031310.1016/j.jacc.2020.11.03033478654
    [Google Scholar]
  166. DesaiY. JadhavT. NirmalS. Yogita K. Desai Diagnosis of medical images using convolutional neural networks.J. Elect. Syst.2024206s2371237610.52783/jes.3220
    [Google Scholar]
  167. KourounisG. ElmahmudiA.A. ThomsonB. HunterJ. UgailH. WilsonC. Computer image analysis with artificial intelligence: A practical introduction to convolutional neural networks for medical professionals.Postgrad. Med. J.20239911781287129410.1093/postmj/qgad09537794609
    [Google Scholar]
  168. MozayanA. FabbriA.R. ManeeveseM. TocinoI. ChheangS. Practical guide to natural language processing for radiology.Radiographics20214151446145310.1148/rg.202120011334469212
    [Google Scholar]
  169. HeringtonJ. McCraddenM.D. CreelK. BoellaardR. JonesE.C. JhaA.K. RahmimA. ScottP.J.H. SunderlandJ.J. WahlR.L. ZuehlsdorffS. SabouryB. Ethical considerations for artificial intelligence in medical imaging: Deployment and governance.J. Nucl. Med.202364101509151510.2967/jnumed.123.26611037620051
    [Google Scholar]
  170. BradyA.P. NeriE. Artificial intelligence in radiology—ethical considerations.Diagnostics202010423110.3390/diagnostics1004023132316503
    [Google Scholar]
  171. FarhudD.D. ZokaeiS. Ethical issues of artificial intelligence in medicine and healthcare.Iran. J. Public Health20215011iv10.18502/ijph.v50i11.760035223619
    [Google Scholar]
  172. JhaA.K. BradshawT.J. BuvatI. HattM. KcP. LiuC. ObuchowskiN.F. SabouryB. SlomkaP.J. SunderlandJ.J. WahlR.L. YuZ. ZuehlsdorffS. RahmimA. BoellaardR. Nuclear medicine and artificial intelligence: Best practices for evaluation (the relaince guidelines).J. Nucl. Med.20226391288129910.2967/jnumed.121.26323935618476
    [Google Scholar]
  173. McCraddenM.D. KirschR.E. Patient wisdom should be incorporated into health AI to avoid algorithmic paternalism.Nat. Med.202329476576610.1038/s41591‑023‑02224‑836823303
    [Google Scholar]
  174. BirchJ. CreelK.A. JhaA.K. PlutynskiA. Clinical decisions using AI must consider patient values.Nat. Med.202228222923210.1038/s41591‑021‑01624‑y35102337
    [Google Scholar]
  175. VayenaE. BlasimmeA. CohenI.G. Machine learning in medicine: Addressing ethical challenges.PLoS Med.20181511e100268910.1371/journal.pmed.100268930399149
    [Google Scholar]
  176. VareliusJ. The value of autonomy in medical ethics.Med. Health Care Philos.20069337738810.1007/s11019‑006‑9000‑z17033883
    [Google Scholar]
  177. TonekaboniS.J.S. McCraddenM.D. GoldenbergA. What clinicians want: Contextualizing explainable machine learning for clinical end use.Proc. Mach. Learn. Res.201910619
    [Google Scholar]
  178. LondonA.J. Artificial intelligence and black-box medical decisions: accuracy versus explainability.Hastings Cent. Rep.2019491152110.1002/hast.97330790315
    [Google Scholar]
  179. PenedoF.J. OswaldL.B. KronenfeldJ.P. GarciaS.F. CellaD. YanezB. The increasing value of eHealth in the delivery of patient-centred cancer care.Lancet Oncol.2020215e240e25110.1016/S1470‑2045(20)30021‑832359500
    [Google Scholar]
  180. KwameA. PetruckaP.M. A literature-based study of patient-centered care and communication in nurse-patient interactions: Barriers, facilitators, and the way forward.BMC Nurs.202120115810.1186/s12912‑021‑00684‑234479560
    [Google Scholar]
  181. McCabeC. Nurse–patient communication: An exploration of patients’ experiences.J. Clin. Nurs.2004131414910.1111/j.1365‑2702.2004.00817.x14687292
    [Google Scholar]
  182. AmannJ. BlasimmeA. VayenaE. FreyD. MadaiV.I. PreciseQ. Precise4Q consortium Explainability for artificial intelligence in healthcare: A multidisciplinary perspective.BMC Med. Inform. Decis. Mak.202020131010.1186/s12911‑020‑01332‑633256715
    [Google Scholar]
  183. KunnemanM. MontoriV.M. Castaneda-GuarderasA. HessE.P. What is shared decision making? (and what it is not).Acad. Emerg. Med.201623121320132410.1111/acem.1306527770514
    [Google Scholar]
  184. Spencer-BonillaG. ThotaA. OrganickP. PonceO.J. KunnemanM. GiblonR. BrandaM.E. SivlyA.L. BehnkenE. MayC.R. MontoriV.M. Normalization of a conversation tool to promote shared decision making about anticoagulation in patients with atrial fibrillation within a practical randomized trial of its effectiveness: A cross-sectional study.Trials202021139510.1186/s13063‑020‑04305‑232398149
    [Google Scholar]
  185. BeetzN.L. MaierC. SeggerL. ShnayienS. TrippelT.D. LindowN. BousabarahK. WesterhoffM. FehrenbachU. GeiselD. First PACS-integrated artificial intelligence-based software tool for rapid and fully automatic analysis of body composition from CT in clinical routine.JCSM Clin. Rep.20227131110.1002/crt2.44
    [Google Scholar]
  186. YangY. MaS. GaoJ. Design and implementation of a new generation of PACS based on artificial intelligent visualization.Imag. Informat. Health. Res. Appl.20201131821422210.1117/12.2548921
    [Google Scholar]
  187. NavabN.JH WilliamM U-Net: Convolutional Networks for Biomedical Image Segmentation.ChamSpringer2015
    [Google Scholar]
  188. SridharC. PareekP.K. KalidossR. JamalS.S. ShuklaP.K. NuagahS.J. Optimal medical image size reduction model creation using recurrent neural network and genpsowvq.J. Healthc. Eng.202220221810.1155/2022/235486635256896
    [Google Scholar]
  189. ChenY.M. ChenY.J. HoW.H. TsaiJ.T. Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method.BMC Bioinformatics202122S5Suppl. 514710.1186/s12859‑021‑04083‑x34749629
    [Google Scholar]
  190. HalabiS.S. PrevedelloL.M. Kalpathy-CramerJ. MamonovA.B. BilbilyA. CiceroM. PanI. PereiraL.A. SousaR.T. AbdalaN. KitamuraF.C. ThodbergH.H. ChenL. ShihG. AndrioleK. KohliM.D. EricksonB.J. FlandersA.E. The RSNA pediatric bone age machine learning challenge.Radiology2019290249850310.1148/radiol.201818073630480490
    [Google Scholar]
  191. ArunachalamH.B. MishraR. DaescuO. CederbergK. RakhejaD. SenguptaA. LeonardD. HallacR. LeaveyP. Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models.PLoS One2019144e021070610.1371/journal.pone.021070630995247
    [Google Scholar]
  192. SayresR. TalyA. RahimyE. BlumerK. CozD. HammelN. KrauseJ. NarayanaswamyA. RastegarZ. WuD. XuS. BarbS. JosephA. ShumskiM. SmithJ. SoodA.B. CorradoG.S. PengL. WebsterD.R. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy.Ophthalmology2019126455256410.1016/j.ophtha.2018.11.01630553900
    [Google Scholar]
  193. Pinto dos SantosD. BrodehlS. BaeßlerB. ArnholdG. DratschT. ChonS.H. MildenbergerP. JungmannF. Structured report data can be used to develop deep learning algorithms: A proof of concept in ankle radiographs.Insights Imaging20191019310.1186/s13244‑019‑0777‑831549305
    [Google Scholar]
  194. KovacsM.D. MesterhazyJ. AvrinD. UrbaniaT. MonganJ. Correlate: A PACS- and EHR-integrated tool leveraging natural language processing to provide automated clinical follow-up.Radiographics20173751451146010.1148/rg.201716019528898194
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056370620250403030638
Loading
/content/journals/cmir/10.2174/0115734056370620250403030638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test