Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objectives

This study aimed to assess the effectiveness and precision of a deep learning-based model in forecasting the early response of HCC patients to TACE.

Methods

A comprehensive review of HCC-TACE data involving 111 patients with HCC was carried out, encompassing both pre-TACE MR images (captured before the first TACE) and post-TACE imaging (acquired between 30 and 60 days following TACE). Based on the mRECIST criteria, patients were divided into two cohorts: a training dataset (91 subjects, 645 images) and a test dataset (20 subjects, 155 images). A deep learning-based model utilizing LeNet architecture with an attention mechanism was developed, targeting the prediction of HCC patients' response to TACE. The robustness and accuracy of the model were examined via ROC curves and confusion matrices.

Results

Post-TACE treatment, 56 patients (50.5%) manifested an objective response (CR+PR), whereas 55 patients (49.5%) exhibited no response (SD+PD). Concerning the model's predictive ability for TACE response, the AUC was found to be 0.760 in the training dataset and 0.729 in the test dataset. The model's prediction accuracy was further corroborated by the confusion matrix, revealing an average accuracy of 70.7% in the training dataset and 72.3% in the test dataset.

Conclusion

Implementing a deep learning-based model using MRI data is potent for forecasting HCC patients’ response to TACE treatment. The novel LeNet model with the attention mechanism conceived in this study contributes valuable insights that can guide the formulation of effective treatment strategies.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056367143250610045305
2025-06-20
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056367143.html?itemId=/content/journals/cmir/10.2174/0115734056367143250610045305&mimeType=html&fmt=ahah

References

  1. MarreroJ.A. KulikL.M. SirlinC.B. ZhuA.X. FinnR.S. AbecassisM.M. RobertsL.R. HeimbachJ.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases.Hepatology201868272375010.1002/hep.2991329624699
    [Google Scholar]
  2. YuR. FanR. HouJ. Chronic hepatitis B virus infection: Epidemiology, prevention, and treatment in China.Front. Med.20148213514410.1007/s11684‑014‑0331‑524810645
    [Google Scholar]
  3. XiangX. ZhongJ.H. WangY.Y. YouX.M. MaL. XiangB.D. LiL.Q. Distribution of tumor stage and initial treatment modality in patients with primary hepatocellular carcinoma.Clin. Transl. Oncol.201719789189710.1007/s12094‑017‑1621‑628160206
    [Google Scholar]
  4. LiY.K. WuS. WuY.S. ZhangW.H. WangY. LiY.H. KangQ. HuangS.Q. ZhengK. JiangG.M. WangQ.B. LiangY.B. LiJ. LakangY. YangC. LiJ. WangJ.P. KuiX. KeY. Portal venous and hepatic arterial coefficients predict post-hepatectomy overall and recurrence-free survival in patients with hepatocellular carcinoma: A retrospective study.J. Hepatocell. Carcinoma2024111389140210.2147/JHC.S46216839011125
    [Google Scholar]
  5. GalleP.R. FornerA. LlovetJ.M. MazzaferroV. PiscagliaF. RaoulJ-L. SchirmacherP. VilgrainV. European Association for the Study of the Liver Management of hepatocellular carcinoma.J. Hepatol.201869118223610.1016/j.jhep.2018.03.01929628281
    [Google Scholar]
  6. FacciorussoA. ServiddioG. MuscatielloN. Local ablative treatments for hepatocellular carcinoma: An updated review.World J. Gastrointest. Pharmacol. Ther.20167447748910.4292/wjgpt.v7.i4.47727867681
    [Google Scholar]
  7. JinP.P. ShaoS.Y. WuW.T. ZhaoX.Y. HuangB.F. FuQ.H. QueR.S. HuQ.D. Combination of transarterial chemoembolization and sorafenib improves outcomes of unresectable hepatocellular carcinoma: An updated systematic review and meta-analysis.Jpn. J. Clin. Oncol.201848121058106910.1093/jjco/hyy13830272196
    [Google Scholar]
  8. SongW. YuX. GuoD. LiuH. TangZ. LiuX. ZhouJ. ZhangH. LiuY. LiuX. MRI-based radiomics: Associations with the recurrence-free survival of patients with hepatocellular carcinoma treated with conventional transcatheter arterial chemoembolization.J. Magn. Reson. Imaging202052246147310.1002/jmri.2697731675174
    [Google Scholar]
  9. BolondiL. BurroughsA. DufourJ-F. GalleP. MazzaferroV. PiscagliaF. RaoulJ. SangroB. BolondiL. Heterogeneity of patients with intermediate (BCLC B) hepatocellular carcinoma: Proposal for a subclassification to facilitate treatment decisions.Semin. Liver Dis.201332434835910.1055/s‑0032‑132990623397536
    [Google Scholar]
  10. SciarraA. RonotM. Di TommasoL. RaschioniC. CasteraL. BelghitiJ. BedossaP. VilgrainV. RoncalliM. ParadisV. TRIP: A pathological score for transarterial chemoembolization resistance individualized prediction in hepatocellular carcinoma.Liver Int.201535112466247310.1111/liv.1284425865109
    [Google Scholar]
  11. LiZ.W. RenA.H. YangD.W. XuH. WeiJ. YuanC.W. WangZ.C. YangZ.H. Preoperatively predicting early response of HCC to TACE using clinical indicators and MRI features.BMC Med. Imaging202222117610.1186/s12880‑022‑00900‑836207686
    [Google Scholar]
  12. VesselleG. Quirier-LeleuC. VelascoS. CharierF. SilvainC. BoucebciS. IngrandP. TasuJ.P. Predictive factors for complete response of chemoembolization with drug-eluting beads (DEB-TACE) for hepatocellular carcinoma.Eur. Radiol.20162661640164810.1007/s00330‑015‑3982‑y26455721
    [Google Scholar]
  13. ZhangH. HeX. YuJ. SongW. LiuX. LiuY. ZhouJ. GuoD. Preoperative MRI features and clinical laboratory indicators for predicting the early therapeutic response of hepatocellular carcinoma to transcatheter arterial chemoembolization combined with High-intensity focused ultrasound treatment.Br. J. Radiol.20199210992019007310.1259/bjr.2019007331166700
    [Google Scholar]
  14. HatanakaT. AraiH. ShibasakiM. TojimaH. TakizawaD. ToyodaM. TakayamaH. AbeT. SatoK. KakizakiS. YamadaM. Factors predicting overall response and overall survival in hepatocellular carcinoma patients undergoing balloon-occluded transcatheter arterial chemoembolization: A retrospective cohort study.Hepatol. Res.201848216517510.1111/hepr.1291228500686
    [Google Scholar]
  15. VandecaveyeV. MichielsenK. De KeyzerF. LalemanW. KomutaM. Op de beeckK. RoskamsT. NevensF. VerslypeC. MaleuxG. Chemoembolization for hepatocellular carcinoma: 1-month response determined with apparent diffusion coefficient is an independent predictor of outcome.Radiology2014270374775710.1148/radiol.1313059124475816
    [Google Scholar]
  16. YuanZ.G. WangZ.Y. XiaM.Y. LiF.Z. LiY. ShenZ. WangX.Z. Diffusion kurtosis imaging for assessing the therapeutic response of transcatheter arterial chemoembolization in hepatocellular carcinoma.J. Cancer20201182339234710.7150/jca.3249132127960
    [Google Scholar]
  17. WuL. XuP. RaoS. YangL. ChenC. LiuH. FuC. ZengM. ADC total ratio and D ratio derived from intravoxel incoherent motion early after TACE are independent predictors for survival in hepatocellular carcinoma.J. Magn. Reson. Imaging201746382083010.1002/jmri.2561728276105
    [Google Scholar]
  18. SchobertI.T. SavicL.J. ChapiroJ. BousabarahK. ChenE. Laage-GauppF. TeferaJ. NezamiN. LinM. PollakJ. SchlachterT. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as predictors of tumor response in hepatocellular carcinoma after DEB-TACE.Eur. Radiol.202030105663567310.1007/s00330‑020‑06931‑532424595
    [Google Scholar]
  19. WangB. LiF. ChengL. ZhanY. WuB. ChenP. ShenJ. WuW. MaX. ZhuJ. PanB. GuoW. ChengY. The pretreatment platelet count is an independent predictor of tumor progression in patients undergoing transcatheter arterial chemoembolization with hepatitis B virus-related hepatocellular carcinoma.Future Oncol.201915882783910.2217/fon‑2018‑059130714399
    [Google Scholar]
  20. SunY. BaiH. XiaW. WangD. ZhouB. ZhaoX. YangG. XuL. ZhangW. LiuP. XuJ. MengS. LiuR. GaoX. Predicting the outcome of transcatheter arterial embolization therapy for unresectable hepatocellular carcinoma based on radiomics of preoperative multiparameter MRI.J. Magn. Reson. Imaging20205241083109010.1002/jmri.2714332233054
    [Google Scholar]
  21. PengJ. KangS. NingZ. DengH. ShenJ. XuY. ZhangJ. ZhaoW. LiX. GongW. HuangJ. LiuL. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging.Eur. Radiol.202030141342410.1007/s00330‑019‑06318‑131332558
    [Google Scholar]
  22. PengJ. HuangJ. HuangG. ZhangJ. Predicting the initial treatment response to transarterial chemoembolization in intermediate-stage hepatocellular carcinoma by the integration of radiomics and deep learning.Front. Oncol.20211173028210.3389/fonc.2021.73028234745952
    [Google Scholar]
  23. KimD.W. LeeG. KimS.Y. AhnG. LeeJ.G. LeeS.S. KimK.W. ParkS.H. LeeY.J. KimN. Deep learning–based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC.Eur. Radiol.20213197047705710.1007/s00330‑021‑07803‑233738600
    [Google Scholar]
  24. ZhangY. LvX. QiuJ. ZhangB. ZhangL. FangJ. LiM. ChenL. WangF. LiuS. ZhangS. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma.J. Magn. Reson. Imaging202154113414310.1002/jmri.2753833559293
    [Google Scholar]
  25. JiaX SunZ MiQ YangZ YangD. A multimodality-contribution-aware tripnet for histologic grading of hepatocellular carcinoma.IEEE/ACM Trans Comput Biol Bioinform20221942003201610.1109/TCBB.2021.3079216
    [Google Scholar]
  26. ZhangL. XiaW. YanZ.P. SunJ.H. ZhongB.Y. HouZ.H. YangM.J. ZhouG.H. WangW.S. ZhaoX.Y. JianJ.M. HuangP. ZhangR. ZhangS. ZhangJ.Y. LiZ. ZhuX.L. GaoX. NiC.F. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib.Front. Oncol.20201059329210.3389/fonc.2020.59329233102242
    [Google Scholar]
  27. LiY.K. WangQ.B. LiangY.B. KeY. CT measurement of blood perfusion in hepatocellular carcinoma: From basic principle, measurement methods to clinical application.Zhonghua Zhong Liu Za Zhi2024461094094710.3760/cma.j.cn112152‑20240605‑0024039414594
    [Google Scholar]
  28. LencioniR. LlovetJ. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma.Semin. Liver Dis.2010301526010.1055/s‑0030‑124713220175033
    [Google Scholar]
  29. MorshidA. ElsayesK.M. KhalafA.M. ElmohrM.M. YuJ. KasebA.O. HassanM. MahvashA. WangZ. HazleJ.D. FuentesD. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization.Radiol. Artif. Intell.201915e18002110.1148/ryai.201918002131858078
    [Google Scholar]
  30. KongC. ZhaoZ. ChenW. LvX. ShuG. YeM. SongJ. YingX. WengQ. WengW. FangS. ChenM. TuJ. JiJ. Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE.Eur. Radiol.202131107500751110.1007/s00330‑021‑07910‑033860832
    [Google Scholar]
  31. YasakaK. AkaiH. AbeO. KiryuS. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study.Radiology2018286388789610.1148/radiol.201717070629059036
    [Google Scholar]
  32. AbajianA. MuraliN. SavicL.J. Laage-GauppF.M. NezamiN. DuncanJ.S. SchlachterT. LinM. GeschwindJ.F. ChapiroJ. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept.J. Vasc. Interv. Radiol.2018296850857.e110.1016/j.jvir.2018.01.76929548875
    [Google Scholar]
  33. LiuD. LiuF. XieX. SuL. LiuM. XieX. KuangM. HuangG. WangY. ZhouH. WangK. LinM. TianJ. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound.Eur. Radiol.20203042365237610.1007/s00330‑019‑06553‑631900703
    [Google Scholar]
  34. LecunY. BottouL. Gradient-based learning applied to document recognition.Proc IEEE Inst Electr Electron Eng1998861122782324
    [Google Scholar]
  35. HuJ. ShenL. SunG. Squeeze-and-excitation networks.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)Salt Lake City, UT, USA, 18-23 June 2018, pp. 7132-7141.10.1109/CVPR.2018.00745
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056367143250610045305
Loading
/content/journals/cmir/10.2174/0115734056367143250610045305
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test