Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

The anterior cruciate ligament (ACL) is a crucial stabilizer of the knee joint, and its injury risk and surgical outcomes are closely linked to femoral and tibial anatomy. This review focuses on current evidence on how skeletal parameters, such as femoral intercondylar notch morphology, tibial slope, and insertion site variations—influence ACL biomechanics. A narrowed or concave femoral notch raises the risk of impingement, while a higher posterior tibial slope makes anterior tibial translation worse, which increases ACL strain. Gender disparities exist, with females exhibiting smaller notch dimensions, and hormonal fluctuations may contribute to ligament laxity. Anatomical changes that come with getting older make clinical management even harder. Adolescent patients have problems with epiphyseal growth, and older patients have to deal with degenerative notch narrowing and lower bone density. Preoperative imaging (MRI, CT, and 3D reconstruction) enables precise assessment of anatomical variations, guiding individualized surgical strategies. Optimal femoral and tibial tunnel placement during reconstruction is vital to replicate native ACL biomechanics and avoid graft failure. Emerging technologies, including AI-driven segmentation and deep learning models, enhance risk prediction and intraoperative precision. Furthermore, synergistic factors, such as meniscal integrity and posterior oblique ligament anatomy, need to be integrated into comprehensive evaluations. Future directions emphasize personalized approaches, combining advanced imaging, neuromuscular training, and artificial intelligence to optimize prevention, diagnosis, and rehabilitation. Addressing age-specific challenges, such as growth plate preservation in pediatric cases and osteoarthritis management in the elderly, will improve long-term outcomes. Ultimately, a nuanced understanding of skeletal anatomy and technological integration holds promise for reducing ACL reinjury rates and enhancing patient recovery.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056361050250605052447
2025-06-19
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056361050.html?itemId=/content/journals/cmir/10.2174/0115734056361050250605052447&mimeType=html&fmt=ahah

References

  1. AbulhasanJ. GreyM. Anatomy and physiology of knee stability.J. Funct. Morphol. Kinesiol.2017243410.3390/jfmk2040034
    [Google Scholar]
  2. JamilT. AnsariU. AliM.N. MirM. A review on biomechanical and treatment aspects associated with anterior cruciate ligament.IRBM20173811325
    [Google Scholar]
  3. CayN. AcarH.I. DoganM. BozkurtM. Radiological evaluation of femoral intercondylar notch and tibial intercondylar eminence morphometries in anterior cruciate ligament pathologies using magnetic resonance imaging.Indian J. Orthop.202156232733735140865
    [Google Scholar]
  4. MeiS. LiR. XiangX. WangW. [Research progress of anterior cruciate ligament reconstruction with over-the-top technique].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi20223691166117136111481
    [Google Scholar]
  5. TorkamanA. AziziA. KazemiJ. MousapourA. Post COVID-19 anterior cruciate ligament (ACL) tear in twin sisters after re-starting professional futsal exercises: A ‎case report.J. Res. Orthop. Sci.202291656810.32598/JROSJ.9.1.861.1
    [Google Scholar]
  6. HayashiH. KurosakaD. SaitoM. IkedaR. KubotaD. KayamaT. HyakutakeT. MarumoK. Positioning the femoral bone socket and the tibial bone tunnel using a rectangular retro-dilator in anterior cruciate ligament reconstruction.PLoS One2019145e021577810.1371/journal.pone.021577831048889
    [Google Scholar]
  7. MoonD.K. JoH.S. LeeD.Y. KangD.G. WonH.C. SeoM.S. HwangS.C. Anterior cruciate ligament femoral-tunnel drilling through an anteromedial portal: 3-dimensional plane drilling angle affects tunnel length relative to notchplasty.Knee Surg. Relat. Res.20213311310.1186/s43019‑021‑00092‑533853676
    [Google Scholar]
  8. CremerP. PeltierA. MaubissonL. NeyretP. LustigS. ServienE. Positioning of the tibial tunnel after single-bundle ACL primary reconstruction on 3D CT scans: A new method.Arthrosc Sports Med Rehabil202025e615e62233135002
    [Google Scholar]
  9. IsıklarS. OzdemirS.T. GokalpG. An association between femoral trochlear morphology and non-contact anterior cruciate ligament total rupture: A retrospective MRI study.Skeletal Radiol.20215071441145433404666
    [Google Scholar]
  10. ZbrojkiewiczD. ScholesC. ZhongE. HoltM. BellC. Anatomical variability of intercondylar fossa geometry in patients diagnosed with primary anterior cruciate ligament rupture.Clin. Anat.202033461061831503350
    [Google Scholar]
  11. LiL.T. ChuckC. BokshanS.L. OwensB.D. Increased total cost and lack of diagnostic utility for emergency department visits after ACL injury.Orthop. J. Sports Med.2021952325967121100671110.1177/2325967121100671134026918
    [Google Scholar]
  12. CarboneA.D. WangK. TiaoJ. ChuB. PoeranJ. ColvinA.C. GladstoneJ.N. AnthonyS.G. Trends in health care expenditures and patient out-of-pocket expenses in primary anterior cruciate ligament reconstruction.Am. J. Sports Med.202250102680268735834951
    [Google Scholar]
  13. FilbayS.R. SkouS.T. BullockG.S. LeC.Y. RäisänenA.M. ToomeyC. EzzatA.M. HaydenA. CulvenorA.G. WhittakerJ.L. RoosE.M. CrossleyK.M. JuhlC.B. EmeryC. Long-term quality of life, work limitation, physical activity, economic cost and disease burden following ACL and meniscal injury: A systematic review and meta-analysis for the OPTIKNEE consensus.Br. J. Sports Med.202256241465147410.1136/bjsports‑2022‑10562636171078
    [Google Scholar]
  14. SturnickD.R. VacekP.M. DeSarnoM.J. Gardner-MorseM.G. TourvilleT.W. SlauterbeckJ.R. JohnsonR.J. ShultzS.J. BeynnonB.D. Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females.Am. J. Sports Med.201543483984710.1177/036354651456327725583759
    [Google Scholar]
  15. YellinJ.L. ParisienR.L. TalathiN.S. FarooqiA.S. KocherM.S. GanleyT.J. Narrow notch width is a risk factor for anterior cruciate ligament injury in the pediatric population: A multicenter study.Arthrosc Sports Med Rehabil202133e823e82834195650
    [Google Scholar]
  16. Fernández-JaénT. López-AlcorochoJ.M. Rodriguez-IñigoE. CastellánF. HernándezJ.C. Guillén-GarcíaP. The importance of the intercondylar notch in anterior cruciate ligament tears.Orthop. J. Sports Med.201538232596711559788210.1177/232596711559788226535388
    [Google Scholar]
  17. DiasJ.P. BhuiyanA. ShamimN. Diagnostic of injury risk in the anterior cruciate ligament based on shape context description of the intercondylar notch curvature.J. Eng. Sci. Med. Diagn. Ther.202252021001
    [Google Scholar]
  18. SangeetaM. AfrozeM.K.H. VaralakshmiK. Association between intercondylar notch dimensions and morphometry of anterior cruciate ligament – A cadaveric study.J Med Sci2021711810.46347/jmsh.2021.v07i01.001
    [Google Scholar]
  19. AndriolloL. PicchiA. SangalettiR. PerticariniL. RossiS.M.P. LogroscinoG. BenazzoF. The role of artificial intelligence in anterior cruciate ligament injuries: Current concepts and future perspectives.Healthcare202412330010.3390/healthcare1203030038338185
    [Google Scholar]
  20. LiM. BaiH. ZhangF. ZhouY. LinQ. ZhouQ. FengQ. ZhangL. Automatic segmentation model of intercondylar fossa based on deep learning: A novel and effective assessment method for the notch volume.BMC Musculoskelet. Disord.202223142635524293
    [Google Scholar]
  21. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. AlqahtaniT. AlshayaA.I. AlmoharebS.N. AldairemA. AlrashedM. Bin SalehK. BadreldinH.A. Al YamiM.S. Al HarbiS. AlbekairyA.M. Revolutionizing healthcare: the role of artificial intelligence in clinical practice.BMC Med. Educ.202323168937740191
    [Google Scholar]
  22. BorqueK.A. LaughlinM.S. PinheiroV.H. JonesM. WilliamsA. Rebranding the ‘anatomic’ ACL reconstruction: Current concepts.J. ISAKOS202381232836435433
    [Google Scholar]
  23. VignosM.F. SmithC.R. RothJ.D. KaiserJ.M. BaerG.S. KijowskiR. ThelenD.G. ACL graft tunnel placement and graft angle are primary determinants of internal knee mechanics following reconstructive surgery.Am. J. Sports Med.20204814350333175559
    [Google Scholar]
  24. PaschosN.K. HowellS.M. Anterior cruciate ligament reconstruction: principles of treatment.EFORT Open Rev.201711139840828461919
    [Google Scholar]
  25. YonetaniY. KusanoM. TsujiiA. KinugasaK. HamadaM. ShinoK. Tibial insertion of the anterior cruciate ligament and anterior horn of the lateral meniscus share the lateral slope of the medial intercondylar ridge: A computed tomography study in a young, healthy population.Knee201926361261810.1016/j.knee.2019.04.00931078391
    [Google Scholar]
  26. GulanL. GulanG. JerkovićR. MarićI. Šoić-VranićT. Odnos lateralnog interkondilarnog grebena i hvatišta prednjeg križnog ligamenta.Medicina Fluminensis202056327227710.21860/medflum2020_241508
    [Google Scholar]
  27. ÇimenK. Evaluation of the anterior cruciate ligament related distal femur and proximal tibia anatomical structures on dry adult bones.Revista Argentina de Anatomía Clínica20221439910610.31051/1852.8023.v14.n3.38892
    [Google Scholar]
  28. TranE.P. ChenA.Y. DingelA.B. TerhuneB. SegoviaN.A. GanleyT.J. FabricantP.D. GreenD.W. StavinohaT.J. SheaK.G. ACL length in pediatric populations: An mri retrospective study.Orthop J Sports Me202084 suppl310.1177/2325967120S00159
    [Google Scholar]
  29. NapierR.J. GarciaE. DevittB.M. FellerJ.A. WebsterK.E. Increased radiographic posterior tibial slope is associated with subsequent injury following revision anterior cruciate ligament reconstruction.Orthop. J. Sports Med.2019711232596711987937310.1177/232596711987937331723566
    [Google Scholar]
  30. YamauchiS. SasakiS. KimuraY. YamamotoY. TsudaE. IshibashiY. Tibial eminence fracture with midsubstance anterior cruciate ligament tear in a 10-year-old boy: A case report.Int. J. Surg. Case Rep.202067131731991376
    [Google Scholar]
  31. ConeS.G. HoweD. FisherM.B. Size and shape of the human anterior cruciate ligament and the impact of sex and skeletal growth: A systematic review.JBJS Rev.201976e831246862
    [Google Scholar]
  32. MuroS. KimJ. TsukadaS. AkitaK. Significance of the broad non-bony attachments of the anterior cruciate ligament on the tibial side.Sci. Rep.2022121684435477722
    [Google Scholar]
  33. JoynerP.W. MillsF.B.IV BrothertonS. BruceJ. RothT. HessR. WilcoxC.L. LeddonC.E. DavisB. O’GradyC. AndrewsJ.R. RothC.A. Blumensaat line as a prediction of native anterior cruciate ligament length.Orthop. J. Sports Med.202088232596712094318510.1177/232596712094318532821762
    [Google Scholar]
  34. TranE.P. DingelA.B. TerhuneE.B. SegoviaN.A. VuongB. GanleyT.J. FabricantP.D. GreenD.W. StavinohaT.J. SheaK.G. Anterior cruciate ligament length in pediatric populations: An MRI study.Orthop. J. Sports Med.2021942325967121100228610.1177/2325967121100228635146026
    [Google Scholar]
  35. MenghiniD. KaushalS.G. FlanneryS.W. EcklundK. MurrayM.M. FlemingB.C. KiapourA.M. Three-dimensional magnetic resonance imaging analysis shows sex-specific patterns in changes in anterior cruciate ligament cross-sectional area along its length.J. Orthop. Res.202341477177810.1002/jor.2541335803594
    [Google Scholar]
  36. BarnettS.C. MurrayM.M. FlanneryS.W. MenghiniD. FlemingB.C. KiapourA.M. ProffenB. SantN. PortillaG. SanbornR. FreibergerC. HendersonR. EcklundK. YenY.M. KramerD. MicheliL. BEAR Trial Team ACL size, but not signal intensity, is influenced by sex, body size, and knee anatomy.Orthop. J. Sports Med.20219122325967121106383610.1177/2325967121106383634988237
    [Google Scholar]
  37. WangH. ZhangZ. QuY. ShiQ. AiS. ChengC.K. Correlation between ACL size and dimensions of bony structures in the knee joint.Ann. Anat.202224115190610.1016/j.aanat.2022.15190635131449
    [Google Scholar]
  38. IriuchishimaT. ShirakuraK. YorifujiH. AizawaS. MurakamiT. FuF.H. ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch.Knee Surg. Sports Traumatol. Arthrosc.201321478979610.1007/s00167‑012‑2044‑022552621
    [Google Scholar]
  39. LansdownD. MaC.B. The influence of tibial and femoral bone morphology on knee kinematics in the ACL injured knee.Clin. Sports Med.201837112729173552
    [Google Scholar]
  40. HashemiJ. ChandrashekarN. GillB. BeynnonB.D. SlauterbeckJ.R. SchuttR.C.Jr MansouriH. DabeziesE. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint.J. Bone Joint Surg. Am.200890122724273410.2106/JBJS.G.0135819047719
    [Google Scholar]
  41. DæhlinL. InderhaugE. StrandT. ParkarA.P. SolheimE. The effect of posterior tibial slope on the risk of revision surgery after anterior cruciate ligament reconstruction.Am. J. Sports Med.202250110311034792414
    [Google Scholar]
  42. FoxM.A. EnglerI.D. ZsidaiB.T. HughesJ.D. MusahlV. Anatomic anterior cruciate ligament reconstruction: Freddie Fu’s paradigm.J. ISAKOS202381152235988888
    [Google Scholar]
  43. ToritsukaY. AmanoH. YamadaY. HamadaM. MitsuokaT. HoribeS. ShinoK. Bi-socket ACL reconstruction using hamstring tendons: high versus low femoral socket placement.Knee Surg. Sports Traumatol. Arthrosc.200715783584617364204
    [Google Scholar]
  44. ParkH-S. AhnC. FungD.T. RenY. ZhangL-Q. A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch.J. Biomech.201043102039204220413123
    [Google Scholar]
  45. LiX. LuJ. SuJ. LiH. LiuX. DingR. High flexion femoral side remnant preservation positioning technique: A new method for positioning the femoral tunnel in anterior cruciate ligament reconstruction.J. Orthop. Surg. Res.202419118938500214
    [Google Scholar]
  46. OkazakiK. OsakiK. NishikawaK. MatsubaraH. TashiroY. IwamotoY. Overestimation of femoral tunnel length during anterior cruciate ligament reconstruction using the retrograde outside-in drilling technique.Arch. Orthop. Trauma Surg.201613681159116310.1007/s00402‑016‑2492‑y27370882
    [Google Scholar]
  47. LiG. XieY. XuB. Three-dimensional reconstruction with dual-source computed tomography for evaluating graft deformation and bone tunnel position following reconstruction of the anterior cruciate ligament.Med. Eng. Phys.202211010385810.1016/j.medengphy.2022.10385835909023
    [Google Scholar]
  48. KernkampW.A. VaradyN.H. LiJ.S. TsaiT.Y. AsnisP.D. van ArkelE.R.A. NelissenR.G.H.H. GillT.J. Van de VeldeS.K. LiG. An in vivo prediction of anisometry and strain in anterior cruciate ligament reconstruction–A combined magnetic resonance and dual fluoroscopic imaging analysis.Arthroscopy20183441094110310.1016/j.arthro.2017.10.04229409674
    [Google Scholar]
  49. GhazikhanianV. BeltranJ. NikacV. FeldmanM. BencardinoJ.T. Tibial tunnel and pretibial cysts following ACL graft reconstruction: MR imaging diagnosis.Skeletal Radiol.201241111375137910.1007/s00256‑012‑1486‑222790790
    [Google Scholar]
  50. MhaskarV.A. SinghA.K. SoniP. MaheshwariJ. Does viewing the ACL femoral footprint end on using a high medial portal produce better tunnel placement as compared to viewing it from a lateral portal while drilling: A 3D CT-based pilot study.Indian J. Orthop.202155236837410.1007/s43465‑020‑00179‑333927815
    [Google Scholar]
  51. MhaskarV.A. JainY. SoniP. FiskeR. MaheshwariJ. How important is the tunnel position in outcomes post-ACL reconstruction: A 3D CT-based study.Indian J. Orthop.202256231231810.1007/s43465‑021‑00485‑435140863
    [Google Scholar]
  52. HosseinzadehS. KiapourA.M. Sex differences in anatomic features linked to anterior cruciate ligament injuries during skeletal growth and maturation.Am. J. Sports Med.20204892205221210.1177/036354652093183132667272
    [Google Scholar]
  53. HosseinzadehS. KiapourA.M. Age-related changes in ACL morphology during skeletal growth and maturation are different between females and males.J. Orthop. Res.202139484184910.1002/jor.2474832427346
    [Google Scholar]
  54. WojtysE.M. HustonL.J. BoyntonM.D. SpindlerK.P. LindenfeldT.N. The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels.Am. J. Sports Med.200230218218810.1177/0363546502030002060111912085
    [Google Scholar]
  55. Martínez-FortunyN. Alonso-CalveteA. Da Cuña-CarreraI. Abalo-NúñezR. Menstrual cycle and sport injuries: A systematic review.Int. J. Environ. Res. Public Health2023204326410.3390/ijerph2004326436833966
    [Google Scholar]
  56. Dos’SantosT. StebbingsG.K. MorseC. ShashidharanM. DanielsK.A.J. SandersonA. Dos’ Santos Effects of the menstrual cycle phase on anterior cruciate ligament neuromuscular and biomechanical injury risk surrogates in eumenorrheic and naturally menstruating women: A systematic review.PLoS One2023181e028080010.1371/journal.pone.028080036701354
    [Google Scholar]
  57. DhillonM.S. HoodaA. RathodP.M. Prominent resident’s ridge as a potential cause of anterior cruciate ligament impingement: A case report.J. Orthop. Case Rep.2021112495134141670
    [Google Scholar]
  58. ChaJ.H. LeeS.H. ShinM.J. ChoiB.K. BinS.I. Relationship between mucoid hypertrophy of the anterior cruciate ligament (ACL) and morphologic change of the intercondylar notch: MRI and arthroscopy correlation.Skeletal Radiol.200837982182618629461
    [Google Scholar]
  59. SayampanathanA.A. KohT.H.B. LeeK.T. Anterior cruciate ligament ganglion causing flexion restriction: A case report and review of literature.Ann. Transl. Med.201641121927386493
    [Google Scholar]
  60. MahardikaI.M.Y. SuhendraH. WonggokusumaE. Arthroscopic excision of an intraarticular osteochondroma of knee: A rare case report.Orth. J. Sport Med.20191111 suppl6110.1177/2325967119S00471
    [Google Scholar]
  61. ArnerJ.W. Editorial Commentary: Risk factors of cyclops syndrome in quadriceps autograft anterior cruciate ligament reconstruction: More helpful data in weighing graft choice.Arthroscopy20233961480148210.1016/j.arthro.2023.01.01637147075
    [Google Scholar]
  62. KimJ.N. ParkH.J. ParkJ.H. KimM.S. ParkJ.H. KimE. ParkS.J. MoonS. Cyclops lesions associated with both bundles and selective bundle repair of the anterior cruciate ligament.Acta Radiol.20236441484148936062581
    [Google Scholar]
  63. WebsterK.E. HewettT.E. Anterior cruciate ligament injury and knee osteoarthritis: An umbrella systematic review and meta-analysis.Clin. J. Sport Med.202232214515233852440
    [Google Scholar]
  64. LohmanderL.S. EnglundP.M. DahlL.L. RoosE.M. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.Am. J. Sports Med.200735101756176917761605
    [Google Scholar]
  65. ZhengR. TanY. GuM. KangT. ZhangH. GuoL. N-acetyl cysteine inhibits lipopolysaccharide-mediated synthesis of interleukin-1β and tumor necrosis factor-α in human periodontal ligament fibroblast cells through nuclear factor-kappa B signaling.Medicine (Baltimore)20199840e1712610.1097/MD.000000000001712631577702
    [Google Scholar]
  66. WangY. TangZ. XueR. SinghG.K. ShiK. LvY. YangL. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: An in vitro study.J. Orthop. Res.20112971008101410.1002/jor.2134921344498
    [Google Scholar]
  67. KrausT. ŠvehlíkM. SingerG. SchalamonJ. ZwickE. LinhartW. The epidemiology of knee injuries in children and adolescents.Arch. Orthop. Trauma Surg.2012132677377910.1007/s00402‑012‑1480‑022358221
    [Google Scholar]
  68. IngramJ.G. FieldsS.K. YardE.E. ComstockR.D. Epidemiology of knee injuries among boys and girls in US high school athletics.Am. J. Sports Med.20083661116112210.1177/036354650831440018375784
    [Google Scholar]
  69. WooS.L.Y. AbramowitchS.D. KilgerR. LiangR. Biomechanics of knee ligaments: injury, healing, and repair.J. Biomech.200639112010.1016/j.jbiomech.2004.10.02516271583
    [Google Scholar]
  70. PattonD. Changes in femoral structure and function following anterior cruciate ligament injury and with aging.2019
    [Google Scholar]
  71. HasoonJ. Al-DadahO. Knee anatomic geometry accurately predicts risk of anterior cruciate ligament rupture.Acta Radiol.20236451904191110.1177/0284185123115232936755362
    [Google Scholar]
  72. LeónH.O. BlancoC.E.R. GuthrieT.B. MartínezO.J.N. Intercondylar notch stenosis in degenerative arthritis of the knee.Arthroscopy200521329430210.1016/j.arthro.2004.11.01915756182
    [Google Scholar]
  73. NagelliC. Di StasiS. TatarskiR. ChenA. WordemanS. HoffmanJ. HewettT.E. Neuromuscular training improves self-reported function and single-leg landing hip biomechanics in athletes after anterior cruciate ligament reconstruction.Orthop. J. Sports Med.2020810232596712095934710.1177/232596712095934733150192
    [Google Scholar]
  74. DiStefanoL.J. PaduaD.A. BlackburnJ.T. GarrettW.E. GuskiewiczK.M. MarshallS.W. Integrated injury prevention program improves balance and vertical jump height in children.J. Strength Cond. Res.201024233234210.1519/JSC.0b013e3181cc222520072067
    [Google Scholar]
  75. AlharbyS.W. Anterior cruciate ligament injuries in growing skeleton.Int. J. Health Sci. (Qassim)201041717921475528
    [Google Scholar]
  76. FaunøP. RømerL. NielsenT. LindM. The risk of transphyseal drilling in skeletally immature patients with anterior cruciate ligament injury.Orthop. J. Sports Med.201649232596711666468510.1177/232596711666468527648453
    [Google Scholar]
  77. PriceM.J. LazaroL. CordascoF.A. GreenD.W. Surgical options for anterior cruciate ligament reconstruction in the young child.Minerva Pediatr.201769433734728612581
    [Google Scholar]
  78. MiglioriniF. PiloneM. SchäferL. BertiniF.A. GiorginoR. MaffulliN. Allograft versus autograft ACL reconstruction in skeletally immature patients: A systematic review.Br. Med. Bull.20251531ldae02010.1093/bmb/ldae02039657067
    [Google Scholar]
  79. GausdenE.B. CalceiJ.G. FabricantP.D. GreenD.W. Surgical options for anterior cruciate ligament reconstruction in the young child.Curr. Opin. Pediatr.2015271829110.1097/MOP.000000000000017425564188
    [Google Scholar]
  80. YangD. OrellanaK. LeeJ. BramJ. SarkarS. RenjilianC.B. GanleyT.J. The Child Opportunity Index and Outcomes After Pediatric Anterior Cruciate Ligament Reconstruction.Orthop. J. Sports Med.20241292325967124124843310.1177/2325967124124843339351066
    [Google Scholar]
  81. MallinosA. JonesK. The double-edged sword: Anterior cruciate ligament reconstructions on adolescent patients—growth plate surgical challenges and future considerations.J. Clin. Med.20241324752239768445
    [Google Scholar]
  82. DehestaniP. FarahmandF. BorjaliA. BashtiK. ChizariM. Bone density may affect primary stability of anterior cruciate ligament reconstruction when organic core bone plug fixation technique used.J. Exp. Orthop.202291534989893
    [Google Scholar]
  83. KocherM.S. MicheliL.J. GerbinoP. HreskoM.T. Tibial eminence fractures in children: prevalence of meniscal entrapment.Am. J. Sports Med.200331340440712750134
    [Google Scholar]
  84. HudgensJ.L. DahmD.L. Treatment of anterior cruciate ligament injury in skeletally immature patients.Int. J. Pediatr.20122012193270222315624
    [Google Scholar]
  85. BixbyE.C. HeyworthB.E. Management of anterior cruciate ligament tears in skeletally immature patients.Curr. Rev. Musculoskelet. Med.202417725827210.1007/s12178‑024‑09897‑938639870
    [Google Scholar]
  86. KurokawaT. CseteK. JávorP. SándorL. BaráthB. HolovicH. TörökL. HartmannP. Anterior cruciate ligament reconstruction in the elderly: 5-Year follow-up study.Injury202455Suppl. 311152910.1016/j.injury.2024.11152939300625
    [Google Scholar]
  87. ÇokyaşarB. AltunO. DaşarU. Anterior cruciate ligament reconstruction improves functional scores and quality of life in patients older than 50 years of age.Arthroscopy, Sports Medicine, and Rehabilitation20235610080610.1016/j.asmr.2023.10080637881191
    [Google Scholar]
  88. BadawyC.R. JanK. BeckE.C. FleetN. TaylorJ. FordK. WatermanB.R. Contemporary principles for postoperative rehabilitation and return to sport for athletes undergoing anterior cruciate ligament reconstruction.Arthroscopy, Sports Medicine, and Rehabilitation202241e103e11310.1016/j.asmr.2021.11.00235141542
    [Google Scholar]
  89. ThacherR.R. RetzkyJ. HsuJ. ArnoneP.G. NguyenJ.T. GreditzerH.G.IV AllenA.A. ColemanS.H. GomollA.H. HannafinJ.A. KellyA.M. MacGillivrayJ.D. McCarthyM.M. NwachukwuB. PearleA.D. RanawatA.S. RodeoS.A. StricklandS.M. TaylorS.A. WarrenR.F. WickiewiczT.L. WilliamsR.J.III NawabiD.H. MarxR.G. HSS ACL Registry Increased lateral posterior tibial slope is associated with a higher rate of lateral meniscal injury in acute noncontact anterior cruciate ligament ruptures.Arthroscopy2025S0749-8063(25)00167-710.1016/j.arthro.2025.03.01140090529
    [Google Scholar]
  90. ChangR. ChenA. LiX. SongX. ZengB. ZhangL. DengW. K-Space data reconstruction algorithm-based mri diagnosis and influencing factors of knee anterior cruciate ligament injury.Contrast Media Mol Imaging20222022171145610.1155/2022/1711456
    [Google Scholar]
  91. DarA.J. JohnA. AshrafS. FaridiT.A. ZahidS. NazirA.B. MRI Diagnosis and Grading of Anterior Cruciate Ligament Injuries.Pak. J. Med. Sci.2022•••341345
    [Google Scholar]
  92. TenshoK. ShimodairaH. AokiT. NaritaN. KatoH. KakegawaA. FukushimaN. MoriizumiT. FujiiM. FujinagaY. SaitoN. Bony landmarks of the anterior cruciate ligament tibial footprint: A detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations.Am. J. Sports Med.20144261433144010.1177/036354651452878924748611
    [Google Scholar]
  93. PiedadeS.R. Leite ArrudaB.P. de VasconcelosR.A. ParkerD.A. MaffulliN. Rehabilitation following surgical reconstruction for anterior cruciate ligament insufficiency: What has changed since the 1960s?—State of the art.J. ISAKOS20238315316210.1016/j.jisako.2022.10.00136410671
    [Google Scholar]
  94. DunnK.L. LamK.C. Valovich McLeodT.C. Early operative versus delayed or nonoperative treatment of anterior cruciate ligament injuries in pediatric patients.J. Athl. Train.201651542542710.4085/1062‑6050.51.5.1127244126
    [Google Scholar]
  95. RochecongarG. PlaweskiS. AzarM. DemeyG. ArndtJ. LouisM.L. LimozinR. DjianP. Sonnery-CottetB. BousquetV. BajardX. WajsfiszA. BoisrenoultP. French Society for Arthroscopy (Société française d’arthroscopie, SFA) Management of combined anterior or posterior cruciate ligament and posterolateral corner injuries: A systematic review.Orthop. Traumatol. Surg. Res.20141008Suppl.S371S37810.1016/j.otsr.2014.09.01025454331
    [Google Scholar]
  96. MartinR.K. WastvedtS. PareekA. PerssonA. VisnesH. FenstadA.M. MoatsheG. WolfsonJ. LindM. EngebretsenL. Ceiling effect of the combined norwegian and danish knee ligament registers limits anterior cruciate ligament reconstruction outcome prediction.Am. J. Sports Med.20235192324233210.1177/0363546523117790537289071
    [Google Scholar]
  97. WangD. LiuS. DingJ. SunA. JiangD. JiangJ. ZhaoJ. ChenD. JiG. LiN. YuanH. YuJ. A deep learning model enhances clinicians’ diagnostic accuracy to more than 96% for anterior cruciate ligament ruptures on magnetic resonance imaging.Arthroscopy20244041197120510.1016/j.arthro.2023.08.01037597705
    [Google Scholar]
  98. CorbanJ. LorangeJ.P. LaverdiereC. KhouryJ. RachevskyG. BurmanM. MartineauP.A. Artificial intelligence in the management of anterior cruciate ligament injuries.Orthop. J. Sports Med.2021972325967121101420610.1177/2325967121101420634277880
    [Google Scholar]
  99. D’AmbrosiR. MeenaA. AroraE.S. AttriM. SchäferL. MiglioriniF. Reconstruction of the anterior cruciate ligament: A historical view.Ann. Transl. Med.2023111036410.21037/atm‑23‑8737675316
    [Google Scholar]
  100. WangX. WangD. ZhangC. ZhangK. DuC. ShiH. Study on the use of 3D printed guides in the individualized reconstruction of the anterior cruciate ligament.BMC Musculoskelet. Disord.202425112610.1186/s12891‑024‑07234‑238336676
    [Google Scholar]
  101. BoscoF. RovereG. GiustraF. MasoniV. CassaroS. CapellaM. RisitanoS. SabatiniL. LucentiL. CamardaL. Advancements in anterior cruciate ligament repair—Current state of the art.Surgeries202452234247
    [Google Scholar]
  102. HermanZ.J. KaarreJ. GetgoodA.M.J. MusahlV. Precision anterior cruciate ligament reconstruction.Clin. Sports Med.202443353554610.1016/j.csm.2023.08.01038811126
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056361050250605052447
Loading
/content/journals/cmir/10.2174/0115734056361050250605052447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test