Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Conventional skin tumor examination shows inherent limitations in accurately assessing tumor depth. HR-MRI offers superior soft tissue resolution and a comprehensive evaluation of skin cancer.

Methods

Patients confirmed by pathological diagnosis as non-melanoma skin cancer from January 2021 to December 2023 were enrolled. Patients in Group 1 received both HR-MRI and tumorectomy, while those in Group 2 received tumorectomy only. The exclusion criteria include patients with contraindications to magnetic resonance examination. MRI sequences included T1WI, T2WI, and T2WI fat suppression, and a dynamic contrast-enhanced(DCE) scan. The advantages of different sequences in evaluating the level of invasion were independently assessed by two radiologists. The advantages of different sequences in evaluating the level of invasion were independently assessed by two radiologists. Tumor size, shape, invasion, and dynamic curves were measured in a corresponding sequence. And tumor signal intensity was recorded in different sequences. For each group, the number of postoperative tissue sections, sections with positive margins, and cases of secondary surgery were recorded. For Group 1, pathological invasion levels were also recorded.

Results

89 cases of non-melanoma skin cancer were collected, including 69 basal cell carcinoma (BBC) and 20 squamous cell carcinoma (SCC). There were 25 patients in group 1 and 59 patients in group 2. T1WI showed mainly isointensity or hypointensity for BCC and SCC. T2WI showed predominantly hyperintense, and T2WI with fat suppression all showed hyperintense. T2WI effectively showed the relationship between tumors and nearby structures, while fat-suppressed T2WI highlighted tumor contours. The positive rate of pathological sections and the rate of secondary resection in group 1 and group 2 were 9.7% and 20%, 23.1% and 44.1%. There was a higher consistency between tumor invasion levels observed by MRI and pathological results in the first group (p>0.75)

Discussion

Advancements in skin tumor diagnosis and treatment reveal that some tumors penetrate deeper than traditional methods can detect, prompting interest in MRI research. HR-MRI, known for its excellent soft tissue resolution, proves useful in outlining tumors and determining their location, particularly with the T2 fat-suppressed sequence. The T2WI sequence effectively assesses skin invasion, aligning well with pathological findings, and this significantly reduces the need for subsequent surgical interventions.. This underscores HR-MRI's value as a preoperative tool. However, the study's small sample size is a limitation, and future research will include more cases for deeper insights.

Conclusion

Skin HR-MRI is valuable for non-melanoma skin cancer, providing accurate preoperative tumor scope assessment, and reducing the rate of secondary surgeries.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056360576250731135230
2025-08-26
2025-09-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056360576.html?itemId=/content/journals/cmir/10.2174/0115734056360576250731135230&mimeType=html&fmt=ahah

References

  1. SandersonW.C. ScherbovS. Average remaining lifetimes can increase as human populations age.Nature2005435704381181310.1038/nature0359315944703
    [Google Scholar]
  2. SandersonW.C. ScherbovS. Faster increases in human life expectancy could lead to slower population aging.PLoS One2015104012192210.1371/journal.pone.012192225876033
    [Google Scholar]
  3. AkdenizM. HahnelE. UlrichC. Blume-PeytaviU. KottnerJ. Prevalence and associated factors of skin cancer in aged nursing home residents: A multicenter prevalence study.PLoS One2019144021537910.1371/journal.pone.021537931009466
    [Google Scholar]
  4. HahnelE. Blume-PeytaviU. TrojahnC. DobosG. JahnkeI. KantiV. RichterC. Lichterfeld-KottnerA. Garcia BartelsN. KottnerJ. Prevalence and associated factors of skin diseases in aged nursing home residents: A multicentre prevalence study.BMJ Open20177901828310.1136/bmjopen‑2017‑01828328947467
    [Google Scholar]
  5. AlmaaniN. JuweidM.E. AlduraidiH. GanemN. Abu-TayehF.A. AlrawiR. HawwariT. Incidence trends of melanoma and nonmelanoma skin cancers in jordan from 2000 to 2016.JCO Glob. Oncol.202399220033810.1200/GO.22.0033836812449
    [Google Scholar]
  6. WuS. HanJ. LiW.Q. LiT. QureshiA.A. Basal-cell carcinoma incidence and associated risk factors in U.S. women and men.Am. J. Epidemiol.2013178689089710.1093/aje/kwt07323828250
    [Google Scholar]
  7. ArtosiF. CostanzaG. Di PreteM. GarofaloV. LozziF. DikaE. CosioT. DiluvioL. ShumakR.G. LambiaseS. Di RaimondoC. CampaS. PiscitelliP. MianiA. BianchiL. CampioneE. Epidemiological and clinical analysis of exposure-related factors in non-melanoma skin cancer: A retrospective cohort study.Environ. Res.202424711811710.1016/j.envres.2024.11811738218521
    [Google Scholar]
  8. MillerD.L. WeinstockM.A. Nonmelanoma skin cancer in the United States: Incidence.J. Am. Acad. Dermatol.199430577477810.1016/S0190‑9622(08)81509‑58176018
    [Google Scholar]
  9. AlbertA. KnollM.A. ContiJ.A. ZbarR.I.S. Non-melanoma skin cancers in the older patient.Curr. Oncol. Rep.20192197910.1007/s11912‑019‑0828‑931359294
    [Google Scholar]
  10. YouJ. XuX. LinL. LiuJ. LiuY. QiJ. ZhouZ. YouX. YinP. WangL. ZhouM. Based on GBD data analysis of the differences in cancer spectrum among the Chinese population in 1990 and 2019.China Cancer.202433013643
    [Google Scholar]
  11. PegaF MomenNC StreicherKN Leon-RouxM Global, regional and national burdens of non-melanoma skin cancer attributable to occupational exposure to solar ultraviolet radiation for 183 countries, 2000–2019: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury.Environ. Int.202318110822610.1016/j.envint.2023.108226
    [Google Scholar]
  12. HeathM.S. BarA. Basal cell carcinoma.Dermatol. Clin.2023411132110.1016/j.det.2022.07.00536410973
    [Google Scholar]
  13. RoscherIngrid BrevigTrine GjersvikPetter Facial basal cell carcinoma.Tidsskr. Nor. Laegeforen.20211411010.4045/tidsskr.21.0282
    [Google Scholar]
  14. Maisel-CampbellA. LinK.A. IbrahimS.A. KangB.Y. AnveryN. DirrM.A. ChristensenR.E. AylwardJ.L. BariO. BhattiH. BolotinD. CherpelisB.S. CohenJ.L. CondonS. FarhangS. FirozB. GarrettA.B. GeronemusR.G. GoldaN.J. HumphreysT.R. HurstE.A. JacobsonO.H. JiangS.B. KariaP.S. Kimyai-AsadiA. KoubaD.J. LahtiJ.G. CouncilM.L. LeM. MacFarlaneD.F. MaherI.A. MillerS.J. MoioliE.K. MorrowM. NeckmanJ. PearsonT. PetersonS.R. Poblete-LopezC. PratherC.L. RanarioJ.S. RubinA.G. SchmultsC.D. SwansonA.M. UrbanC. XuY.G. AlamM. YooS. PoonE. HarikumarV. WeilA. IyengarS. SchaefferM.R. Nonmelanoma skin cancer in patients older than age 85 years presenting for mohs surgery.JAMA Dermatol.2022158777077810.1001/jamadermatol.2022.173335612849
    [Google Scholar]
  15. DennisP. Kim, Kylee J B Kus, Emily Ruiz; Basal Cell Carcinoma.Rev. Hematol.20193311324
    [Google Scholar]
  16. ZengQ. ChenC. ChenD. ZhangG. WangX. Non-surgical therapeutic strategies for non-melanoma skin cancers.Curr. Treat. Options Oncol.202324121978199310.1007/s11864‑023‑01154‑438095778
    [Google Scholar]
  17. TaneseKeiji Diagnosis and management of basal cell carcinoma.Curr. Treat. Options Oncol.20192021310.1007/s11864‑019‑0610‑0
    [Google Scholar]
  18. Warszawik-HendzelO. OlszewskaM. MajM. RakowskaA. CzuwaraJ. RudnickaL. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma.J. Dermatol. Case Rep.201594899710.3315/jdcr.2015.122126848316
    [Google Scholar]
  19. ItoT. InatomiY. NagaeK. Nakano-NakamuraM. NakaharaT. FurueM. UchiH. Narrow-margin excision is a safe, reliable treatment for well-defined, primary pigmented basal cell carcinoma: An analysis of 288 lesions in Japan.J. Eur. Acad. Dermatol. Venereol.20152991828183110.1111/jdv.1268925186070
    [Google Scholar]
  20. CarducciM. BozzettiM. FoscoloA.M. BettiR. Margin detection using digital dermatoscopy improves the performance of traditional surgical excision of basal cell carcinomas of the head and neck.Dermatol. Surg.201137228028510.1111/j.1524‑4725.2010.01870.x21324035
    [Google Scholar]
  21. CarducciM. BozzettiM. de MarcoG. FoscoloA.M. BettiR. Preoperative margin detection by digital dermoscopy in the traditional surgical excision of cutaneous squamous cell carcinomas.J. Dermatolog. Treat.201324322122610.3109/09546634.2012.67271122390630
    [Google Scholar]
  22. SuzukiH.S. SerafiniS.Z. SatoM.S. Utility of dermoscopy for demarcation of surgical margins in Mohs micrographic surgery.An. Bras. Dermatol.2014891384310.1590/abd1806‑4841.2014240024626646
    [Google Scholar]
  23. GuileraJ.M. Barreiro CapurroA. Carrera AlvárezC. Puig SardáS. The role of reflectance confocal microscopy in clinical trials for tumor monitoring.Dermatol. Clin.201634451952610.1016/j.det.2016.06.00127692458
    [Google Scholar]
  24. ShahriariN. RabinovitzH. OlivieroM. Grant-KelsJ.M. Reflectance confocal microscopy: Melanocytic and nonmelanocytic.Clin. Dermatol.202139464365610.1016/j.clindermatol.2021.03.01034809769
    [Google Scholar]
  25. Pogorzelska-AntkowiakA. CalikJ. Mimics of melanoma in reflectance confocal microscopy.Int. J. Dermatol.202160554054610.1111/ijd.1530633166094
    [Google Scholar]
  26. SuppaM. PalmisanoG. TognettiL. LenoirC. CappilliS. FontaineM. CanoC.O. DietG. Perez-AnkerJ. SchuhS. AlessandroD.I. Line-field confocal optical coherence tomography in melanocytic and non-melanocytic skin tumors.Ital. J. Dermatol. Venerol.2023158318018910.23736/S2784‑8671.23.07639‑9
    [Google Scholar]
  27. DobreE.G. SurcelM. ConstantinC. IlieM.A. CaruntuA. CaruntuC. NeaguM. Skin cancer pathobiology at a glance: A focus on imaging techniques and their potential for improved diagnosis and surveillance in clinical cohorts.Int. J. Mol. Sci.2023242107910.3390/ijms2402107936674595
    [Google Scholar]
  28. DebarbieuxS. DalleS. DepaepeL. JeanniotP.Y. PoulalhonN. ThomasL. Extramammary Paget's disease of the scalp: Examination by in vivo and ex vivo reflectance confocal microscopy.Skin Res. Technol.201420112412610.1111/srt.12087
    [Google Scholar]
  29. NelsonS.A. ScopeA. RishponA. RabinovitzH.S. OlivieroM.C. LamanS.D. ColeC.M. ChangY.H.H. SwansonD.L. Accuracy and confidence in the clinical diagnosis of basal cell cancer using dermoscopy and reflex confocal microscopy.Int. J. Dermatol.201655121351135610.1111/ijd.1336127419915
    [Google Scholar]
  30. ChenC.S.J. SierraH. CordovaM. RajadhyakshaM. Confocal microscopy-guided laser ablation for superficial and early nodular Basal cell carcinoma: A promising surgical alternative for superficial skin cancers.JAMA Dermatol.2014150999499810.1001/jamadermatol.2013.1022524827701
    [Google Scholar]
  31. DorrellD.N. StrowdL.C. Skin cancer detection technology.Dermatol. Clin.201937452753610.1016/j.det.2019.05.01031466592
    [Google Scholar]
  32. OhB.H. KimK.H. ChungK.Y. ImagingS.I.U.U. TomographyO.C. MicroscopyC. Skin imaging using ultrasound imaging, optical coherence tomography, confocal microscopy, and two-photon microscopy in cutaneous oncology.Front. Med.2019627410.3389/fmed.2019.0027431824956
    [Google Scholar]
  33. CrisanD. KastlerS. Scharffetter-KochanekK. CrisanM. SchneiderL.A. Ultrasonographic assessment of depth infiltration in melanoma and non-melanoma skin cancer.J. Ultrasound Med.20234271609161610.1002/jum.1618036714967
    [Google Scholar]
  34. HydeJ.S. JesmanowiczA. KneelandJ.B. Surface coil for MR imaging of the skin.Magn. Reson. Med.19875545646110.1002/mrm.19100505073431406
    [Google Scholar]
  35. Becker-WeidmanD. MhuircheartaighJ.N. MorteleK.J. The skinny on skin: MRI features of cutaneous and subcutaneous lesions detected on body MRI studies.Abdom. Radiol.201843102823285010.1007/s00261‑018‑1543‑y29525881
    [Google Scholar]
  36. BudakM.J. Weir-McCallJ.R. YeapP.M. WhiteR.D. WaughS.A. SudarshanT.A.P. ZealleyI.A. High-resolution microscopy-coil MR imaging of skin tumors: Techniques and novel clinical applications.Radiographics20153541077109010.1148/rg.201514014226172352
    [Google Scholar]
  37. Nakayama-TakedaR. SakakibaraS. KurokawaM. HashikawaK. TerashiH. Comparison of malignant skin tumor thickness and relative depth of invasion estimates from preoperative MR-microscopy and pathological evaluation.Dermatol. Surg.201339121767177310.1111/dsu.1237124238325
    [Google Scholar]
  38. de SousaAMS DuarteAC DecnopM de Faria GuimarãesD Coelho NetoCAF SarpiMO DuarteLGP SouzaSA SegatoLF ZavarizJD MukherjiSK GarciaMRT Imaging features and complications of facial cosmetic procedures.Radiographics.20234312e23006010.1148/rg.230060
    [Google Scholar]
  39. KawaguchiM. KatoH. TomitaH. HaraA. SuzuiN. MiyazakiT. MatsuyamaK. SeishimaM. MatsuoM. Magnetic resonance imaging findings differentiating cutaneous basal cell carcinoma from squamous cell carcinoma in the head and neck region.Korean J. Radiol.202021332533110.3348/kjr.2019.050832090525
    [Google Scholar]
  40. TangM. HuangR. ChenJ. ShengM. ZhangZ. XingJ. GuoL. LiY. Clinical value of high-resolution dynamic contrast-enhanced (DCE) MRI in diagnosis of cutaneous squamous cell carcinoma.Inter. Soc. Skin Imag.2021274511520
    [Google Scholar]
  41. KimJ. KimJ.Y. ChunK.A. JeeW.H. SungM.S. MR imaging manifestations of skin tumors.Eur. Radiol.200818112652266110.1007/s00330‑008‑1015‑918491109
    [Google Scholar]
  42. QuerleuxB. Magnetic resonance imaging and spectroscopy of skin and subcutis.J. Cosmet. Dermatol.20043315616110.1111/j.1473‑2130.2004.00118.x17134431
    [Google Scholar]
  43. CiążyńskaM. Kamińska-WinciorekG. LangeD. LewandowskiB. ReichA. SławińskaM. PabianekM. SzczepaniakK. HankiewiczA. UłańskaM. MorawiecJ. Błasińska-MorawiecM. MorawiecZ. PiekarskiJ. NejcD. BrodowskiR. ZaryczańskaA. SobjanekM. NowickiR.J. OwczarekW. SłowińskaM. WróbelK. BieniekA. WoźniackaA. SkibińskaM. NarbuttJ. NiemczykW. CiążyńskiK. LesiakA. The incidence and clinical analysis of non-melanoma skin cancer.Sci. Rep.2021111433710.1038/s41598‑021‑83502‑833619293
    [Google Scholar]
  44. VerbraeckenJ. Van de HeyningP. De BackerW. Van GaalL. Body surface area in normal-weight, overweight, and obese adults. A comparison study.Metabolism200655451552410.1016/j.metabol.2005.11.00416546483
    [Google Scholar]
  45. BittounJ. QuerleuxB. DarrasseL. Advances in MR imaging of the skin.NMR Biomed.200619772373010.1002/nbm.110117075954
    [Google Scholar]
  46. LintzeriD.A. KarimianN. Blume-PeytaviU. KottnerJ. Epidermal thickness in healthy humans: A systematic review and meta-analysis.J. Eur. Acad. Dermatol. Venereol.20223681191120010.1111/jdv.1812335366353
    [Google Scholar]
  47. OlsenJ. HolmesJ. JemecG.B.E. Advances in optical coherence tomography in dermatology—a review.J. Biomed. Opt.201823411010.1117/1.JBO.23.4.04090129701018
    [Google Scholar]
  48. RingH.C. IsraelsenN.M. BangO. HaedersdalM. MogensenM. Potential of contrast agents to enhance in vivo confocal microscopy and optical coherence tomography in dermatology: A review.J. Biophotonics201912620180046210.1002/jbio.20180046230851078
    [Google Scholar]
  49. WelzelJ. Optical coherence tomography in dermatology: A review.Inter. Soc. Skin Imag.20017119
    [Google Scholar]
  50. TamasT. DinuC. LenghelM. BăciuțG. BranS. StoiaS. BăciuțM. The role of ultrasonography in head and neck Non-Melanoma Skin Cancer approach: An update with a review of the literature.Med. Ultrason.2021231838810.11152/mu‑261733220033
    [Google Scholar]
  51. SogaS. KoyamaT. MikoshiA. ArafuneT. KawashimaM. KobayashiK. ShinmotoH. MR imaging of hair and scalp for the evaluation of androgenetic alopecia.Magn. Reson. Med. Sci.202120216016510.2463/mrms.mp.2020‑002632378681
    [Google Scholar]
  52. DenisA. LoustauO. Chiavassa-GandoisH. VialJ. Lalande Champetier de RibesC. RailhacJ.J. SansN. [High resolution MR imaging of the skin: Normal imaging features].J. Radiol.2008897-8 Pt 187387910.1016/S0221‑0363(08)73875‑718772749
    [Google Scholar]
  53. SansN. FaruchM. Chiavassa-GandoisH. RibesC.L.C. PaulC. RailhacJ.J. High-resolution magnetic resonance imaging in study of the skin: Normal patterns.Eur. J. Radiol.2011802e176e18110.1016/j.ejrad.2010.06.00220619987
    [Google Scholar]
  54. LaistlerE. Poirier-QuinotM. LambertS.A. DubuissonR.M. GirardO.M. MoserE. DarrasseL. GinefriJ.C. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 tesla.J. Magn. Reson. Imaging201541249650410.1002/jmri.2454924382749
    [Google Scholar]
  55. AubryS. CasileC. HumbertP. JehlJ. VidalC. KastlerB. Feasibility study of 3-T MR imaging of the skin.Eur. Radiol.20091971595160310.1007/s00330‑009‑1348‑z19277676
    [Google Scholar]
  56. GuflerH. FrankeF.E. RauW.S. High-resolution MRI of basal cell carcinomas of the face using a microscopy coil.AJR Am. J. Roentgenol.20071885W480W48410.2214/AJR.05.079917449748
    [Google Scholar]
  57. YeY. WangY. ZhuJ. HuangR. YuQ. ZhangJ. ChenX. WeiZ. HanY. ZhouN. LiP. LiY. Diagnosis and differential diagnosis of tertiary androgenetic alopecia with severe alopecia areata based on high-resolution MRI.Skin Res. Technol.20232971339310.1111/srt.1339337522498
    [Google Scholar]
  58. SchachtelM.J.C. PanizzaB.J. GandhiM. Evaluation of facial nerve perineural spread from cutaneous squamous cell carcinoma using 3T MR neurography.J. Med. Imaging Radiat. Oncol.2024681414910.1111/1754‑9485.1358937742295
    [Google Scholar]
  59. SharmaR. Skin age testing criteria: Characterization of human skin structures by 500 MHz MRI multiple contrast and image processing.Phys. Med. Biol.201055143959397910.1088/0031‑9155/55/14/00220577039
    [Google Scholar]
  60. MundadaP. BeckerM. LenoirV. StefanelliS. RougemontA.L. BeaulieuJ.Y. BoudabbousS. High resolution MRI of nail tumors and tumor-like conditions.Eur. J. Radiol.20191129310510.1016/j.ejrad.2019.01.00430777226
    [Google Scholar]
  61. HughleyB.B. SchmalbachC.E. Cutaneous head and neck malignancies in the elderly.Clin. Geriatr. Med.201834224525810.1016/j.cger.2018.01.00429661336
    [Google Scholar]
  62. KangY. ChoiJ.A. ChungJ.H. HongS.H. KangH.S. Accuracy of preoperative MRI with microscopy coil in evaluation of primary tumor thickness of malignant melanoma of the skin with histopathologic correlation.Korean J. Radiol.201314228729310.3348/kjr.2013.14.2.28723482432
    [Google Scholar]
  63. LazarethV. Management of non-melanoma skin cancer.Semin. Oncol. Nurs.201329318219410.1016/j.soncn.2013.06.00423958216
    [Google Scholar]
  64. KansaraS. BellD. WeberR. Surgical management of non melanoma skin cancer of the head and neck.Oral Oncol.202010010448510.1016/j.oraloncology.2019.10448531821988
    [Google Scholar]
  65. XuK. LiZ. LiW. QiuJ. LiH. LiY. PengR. Dermatofibrosarcoma ProtuberansM.R.I. Dermatofibrosarcoma protuberans MRI: A preliminary comparison of different sequences.Curr. Med. Imaging Rev.2024201573405630717910.2174/011573405630717924072307582539051582
    [Google Scholar]
  66. StanoszekL.M. WangG.Y. HarmsP.W. Histologic mimics of basal cell carcinoma.Arch. Pathol. Lab. Med.2017141111490150210.5858/arpa.2017‑0222‑RA29072946
    [Google Scholar]
  67. KauvarA.N.B. CroninT.Jr RoenigkR. HruzaG. BennettR. Consensus for nonmelanoma skin cancer treatment: Basal cell carcinoma, including a cost analysis of treatment methods.Dermatol. Surg.201541555057110.1097/DSS.000000000000029625868035
    [Google Scholar]
  68. ThomsonJ. HoganS. Leonardi-BeeJ. WilliamsH.C. Bath-HextallF.J. Interventions for basal cell carcinoma of the skin.Cochrane Database Syst. Rev.20201111CD00341233202063
    [Google Scholar]
  69. LansburyL. Bath-HextallF. PerkinsW. StantonW. Leonardi-BeeJ. Interventions for non-metastatic squamous cell carcinoma of the skin: Systematic review and pooled analysis of observational studies.BMJ2013347nov04 1f615310.1136/bmj.f615324191270
    [Google Scholar]
  70. MerrittB.G. LeeN.Y. BrodlandD.G. ZitelliJ.A. CookJ. The safety of Mohs surgery: A prospective multicenter cohort study.J. Am. Acad. Dermatol.20126761302130910.1016/j.jaad.2012.05.04122892283
    [Google Scholar]
  71. MacfarlaneL. WatersA. EvansA. AffleckA. FlemingC. Seven years’ experience of Mohs micrographic surgery in a UK centre, and development of a UK minimum dataset and audit standards.Clin. Exp. Dermatol.201338326226910.1111/ced.1210823517356
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056360576250731135230
Loading
/content/journals/cmir/10.2174/0115734056360576250731135230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test