Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Despite the increasing prevalence of hyperuricemia and gout, there remains a relative paucity of research focused on the use of straightforward clinical and laboratory markers to predict urate crystal formation. The identification of such predictive markers is crucial, as they would greatly enhance the ability of clinicians to make timely and accurate diagnoses, leading to more effective and targeted therapeutic interventions.

Objective

The aim of this study was to evaluate the diagnostic value of various easily obtainable clinical and laboratory indicators and to establish a decision tree (DT) model to analyze their predictive significance for monosodium urate (MSU) deposition in the first metatarsophalangeal (MTP) joint.

Methods

A retrospective study was conducted on 317 patients who presented to the outpatient clinic with a gout flare between January 2023 and June 2024 (181 cases with MSU deposition in the first MTP joint and 136 cases without such deposition). Clinical and laboratory indicators included gender, age, disease course, serum uric acid (SUA), glomerular filtration rate (GFR), serum creatinine (SCR), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Statistical analysis methods, including T-test, logistic regression and decision tree, were used to analyze the predictors of MSU deposition in the first MTP joint. The performance of the DT model was evaluated using receiver operating characteristic (ROC) curves and a 5-fold cross-validation method was used to ensure the robustness of the study results.

Results

Disease course, GFR, SUA, age, and SCR emerged as significant predictors of MSU deposition in the first MTP joint in both LR and DT analyses. The DT model exhibited superior diagnostic performance compared to the LR model, with a sensitivity of 83.4% (151/181), specificity of 56.6% (77/136), and overall accuracy of 71.9% (228/317). The importance of predictive variables in the DT model showed disease course, GFR, SUA, age, and SCR as 53.36%, 21.51%, 15.1%, 5.5% and 4.53%, respectively. The area under the ROC curve predicted by the DT model was 0.752 (95% CI: 0.700~0.800).

Conclusion

The DT model demonstrates strong predictive capability. Disease duration, GFR, SUA, age, and SCR are pivotal factors for predicting MSU deposition at the first MTP joint, with disease course being the most critical factor.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056355443250505051813
2025-05-22
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056355443.html?itemId=/content/journals/cmir/10.2174/0115734056355443250505051813&mimeType=html&fmt=ahah

References

  1. DalbethN. GoslingA.L. GaffoA. AbhishekA. Gout.Lancet2021397102871843185510.1016/S0140‑6736(21)00569‑933798500
    [Google Scholar]
  2. LiY. ChenZ. XuB. WuG. YuanQ. XueX. WuY. HuangY. MoS. Global, regional, and national burden of gout in elderly 1990–2021: An analysis for the global burden of disease study 2021.BMC Public Health2024241329810.1186/s12889‑024‑20799‑w39604924
    [Google Scholar]
  3. WuM. TianY. WangQ. GuoC. Gout: a disease involved with complicated immunoinflammatory responses: A narrative review.Clin. Rheumatol.202039102849285910.1007/s10067‑020‑05090‑832382830
    [Google Scholar]
  4. ZhengW.Y. ZhanW.F. WangJ.Y. DengW.M. HungY.K. WangW. JiangG.H. Detailed analysis of the association between urate deposition and bone erosion in gout: A dual-energy computed tomography study.Front. Endocrinol. (Lausanne)202314116775610.3389/fendo.2023.116775637143721
    [Google Scholar]
  5. NaotD. PoolB. ChhanaA. GaoR. MunroJ.T. CornishJ. DalbethN. Factors secreted by monosodium urate crystal-stimulated macrophages promote a proinflammatory state in osteoblasts: A potential indirect mechanism of bone erosion in gout.Arthritis Res. Ther.202224121210.1186/s13075‑022‑02900‑z36064735
    [Google Scholar]
  6. ShiD. ChenJ.Y. WuH.X. ZhouQ.J. ChenH.Y. LuY.F. YuR.S. Relationship between urate within tophus and bone erosion according to the anatomic location of urate deposition in gout.Medicine (Baltimore)20199851e1843110.1097/MD.000000000001843131861011
    [Google Scholar]
  7. Tabi-AmponsahA.D. StewartS. GambleG. DoyleA.J. BillingtonK. SonC.N. LattoK. StampL.K. TaylorW.J. HorneA. DalbethN. Baseline dual‐energy computed tomography urate volume predicts fulfillment of gout remission after two years of urate‐lowering therapy.Arthritis Care Res. (Hoboken)202476121657166510.1002/acr.2541439135446
    [Google Scholar]
  8. RichetteP. DohertyM. PascualE. BarskovaV. BecceF. CastanedaJ. CoyfishM. GuilloS. JansenT. JanssensH. LiotéF. MallenC.D. NukiG. Perez-RuizF. PimentaoJ. PunziL. PywellA. SoA.K. TauscheA.K. UhligT. ZavadaJ. ZhangW. TubachF. BardinT. 2018 updated European League Against Rheumatism evidence-based recommendations for the diagnosis of gout.Ann. Rheum. Dis.2020791313810.1136/annrheumdis‑2019‑21531531167758
    [Google Scholar]
  9. DalbethN. HouseM.E. AatiO. TanP. FranklinC. HorneA. GambleG.D. StampL.K. DoyleA.J. McQueenF.M. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: A dual energy CT study.Ann. Rheum. Dis.201574590891110.1136/annrheumdis‑2014‑20639725637002
    [Google Scholar]
  10. TimsansJ. PalomäkiA. KauppiM. Gout and hyperuricemia: A narrative review of their comorbidities and clinical implications.J. Clin. Med.20241324761610.3390/jcm1324761639768539
    [Google Scholar]
  11. ZhangW.Z. Why does hyperuricemia not necessarily induce gout?Biomolecules202111228010.3390/biom1102028033672821
    [Google Scholar]
  12. ChungR. DaneB. YehB.M. MorganD.E. SahaniD.V. KambadakoneA. Dual-energy computed tomography: Technological considerations.Radiol. Clin. North Am.202361694596110.1016/j.rcl.2023.05.00237758362
    [Google Scholar]
  13. MaY.C. ZuoL. ChenJ.H. LuoQ. YuX.Q. LiY. XuJ.S. HuangS.M. WangL.N. HuangW. WangM. XuG.B. WangH.Y. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease.J. Am. Soc. Nephrol.200617102937294410.1681/ASN.200604036816988059
    [Google Scholar]
  14. MallinsonP.I. CoupalT. ReisingerC. ChouH. MunkP.L. NicolaouS. OuelletteH. Artifacts in dual-energy CT gout protocol: A review of 50 suspected cases with an artifact identification guide.AJR Am. J. Roentgenol.20142031W103W10910.2214/AJR.13.1139624951221
    [Google Scholar]
  15. BursillD. TaylorW.J. TerkeltaubR. KuwabaraM. MerrimanT.R. GraingerR. PinedaC. LouthrenooW. EdwardsN.L. AndrésM. Vargas-SantosA.B. RoddyE. PascartT. LinC.T. Perez-RuizF. TedeschiS.K. KimS.C. HarroldL.R. McCarthyG. KumarN. ChapmanP.T. TauscheA.K. Vazquez-MelladoJ. GutierrezM. da Rocha Castelar-PinheiroG. RichetteP. PascualE. FisherM.C. Burgos-VargasR. RobinsonP.C. SinghJ.A. JansenT.L. SaagK.G. SlotO. UhligT. SolomonD.H. KeenanR.T. ScireC.A. Biernat-KaluzaE. DehlinM. NukiG. SchlesingerN. JanssenM. StampL.K. SiveraF. ReginatoA.M. JacobssonL. LiotéF. EaH.K. RosenthalA. BardinT. ChoiH.K. HershfieldM.S. CzegleyC. ChoiS.J. DalbethN. Gout, hyperuricemia, and crystal‐associated disease network consensus statement regarding labels and definitions for disease elements in gout.Arthritis Care Res. (Hoboken)201971342743410.1002/acr.2360729799677
    [Google Scholar]
  16. TamV. NamV.T. QuocT.A.H. Investigation on monosodium urate deposition in the first metatarsophalangeal joint and ankle of primary gout patients using dual-energy computed tomography.Med. J. Malaysia202277327928335638482
    [Google Scholar]
  17. NarangR.K. DalbethN. Pathophysiology of gout.Semin. Nephrol.202040655056310.1016/j.semnephrol.2020.12.00133678310
    [Google Scholar]
  18. MeiY. DongB. GengZ. XuL. Excess uric acid induces gouty nephropathy through crystal formation: A review of recent insights.Front. Endocrinol. (Lausanne)20221391196810.3389/fendo.2022.91196835909538
    [Google Scholar]
  19. KeenanR.T. The biology of urate.Semin. Arthritis Rheum.2020503S2S1010.1016/j.semarthrit.2020.04.00732620198
    [Google Scholar]
  20. ChenZ. XueX. MaL. ZhouS. LiK. WangC. SunW. LiC. ChenY. Effect of low-purine diet on the serum uric acid of gout patients in different clinical subtypes: A prospective cohort study.Eur. J. Med. Res.202429144910.1186/s40001‑024‑02012‑139223686
    [Google Scholar]
  21. PascartT. RamonA. OttavianiS. LegrandJ. DucoulombierV. HouvenagelE. NorberciakL. RichetteP. BecceF. OrnettiP. BudzikJ.F. Association of specific comorbidities with monosodium urate crystal deposition in urate-lowering therapy-naive gout patients: A cross-sectional dual-energy computed tomography study.J. Clin. Med.202095129510.3390/jcm905129532369943
    [Google Scholar]
  22. RajanA. AatiO. KalluruR. GambleG.D. HorneA. DoyleA.J. McQueenF.M. DalbethN. Lack of change in urate deposition by dual-energy computed tomography among clinically stable patients with long-standing tophaceous gout: A prospective longitudinal study.Arthritis Res. Ther.2013155R16010.1186/ar434324286500
    [Google Scholar]
  23. LinT.M. ChiJ.E. ChangC.C. KangY.N. Do etoricoxib and indometacin have similar effects and safety for gouty arthritis? A meta-analysis of randomized controlled trials.J. Pain Res.201812839110.2147/JPR.S18600430588082
    [Google Scholar]
  24. Paes-LemeF.O. de SouzaE.M. CeregattiM.G. CamposM.T.G. Vaz de MeloP.D. da Costa-ValA.P. Cystatin C assay validation using the immunoturbidimetric method to evaluate the renal function of healthy dogs and dogs with acute renal injury.Vet. World20221561595160010.14202/vetworld.2022.1595‑160035993081
    [Google Scholar]
  25. KhawajaS. JafriL. SiddiquiI. HashmiM. GhaniF. The utility of neutrophil gelatinase-associated Lipocalin (NGAL) as a marker of acute kidney injury (AKI) in critically ill patients.Biomark. Res.201971410.1186/s40364‑019‑0155‑130834123
    [Google Scholar]
  26. AhnS.J. ZhangD. LevineB.D. DalbethN. PoolB. RanganathV.K. BenhaimP. NelsonS.D. HsiehS.S. FitzGeraldJ.D. Limitations of dual-energy CT in the detection of monosodium urate deposition in dense liquid tophi and calcified tophi.Skeletal Radiol.20215081667167510.1007/s00256‑021‑03715‑w33532938
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056355443250505051813
Loading
/content/journals/cmir/10.2174/0115734056355443250505051813
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Crystal arthropathies; Decision tree model; gout; Metatarsophalangeal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test