Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Sparse angular projection is an important way to reduce CT dose. It consists of two processes, sparse sampling, and image reconstruction based on sparse projection. Under the traditional reconstruction framework, the sparseness of the projection angle may cause a degradation effect in the reconstructed image. A series of machine learning methods for sparse angle CT reconstruction developed in recent years, especially deep learning methods, can effectively improve the reconstruction quality, however, these methods can only reconstruct CT images based on a certain sparse sampling scheme.

Objective

On the other words, they cannot search for an efficient sparse sampling scheme under a certain dose constraint automatically, which became the motivation to develop an end-to-end sparse angular CT reconstruction method.

Methods

In this work, we propose a sampling encoding layer for searching sparse sampling schemes and integrate it into a sparse reconstruction neural network model based on projection data. Meanwhile, a joint reconstruction strategy based on both the radon domain and image domain painting is also developed.

Results

Experiments based on public CT datasets demonstrate the effectiveness of the method.

Conclusion

The results show that the joint reconstruction network based on a sparse sampling coding layer has great application potential.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056354972250221012822
2025-01-01
2025-10-20
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056354972.html?itemId=/content/journals/cmir/10.2174/0115734056354972250221012822&mimeType=html&fmt=ahah

References

  1. MayoJ.R. AldrichJ. MüllerN.L. Radiation exposure at chest CT: A statement of the Fleischner Society.Radiology20032281152110.1148/radiol.228102087412832569
    [Google Scholar]
  2. BrennerD.J. HallE.J. Computed tomography--An increasing source of radiation exposure.N. Engl. J. Med.2007357222277228410.1056/NEJMra07214918046031
    [Google Scholar]
  3. AlshamariM. NorrmanE. GeijerM. JanssonK. GeijerH. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: Prospective study and systematic review.Eur. Radiol.20162661766177410.1007/s00330‑015‑3984‑926385800
    [Google Scholar]
  4. GaoY. BianZ. HuangJ. ZhangY. NiuS. FengQ. ChenW. LiangZ. MaJ. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol.Opt. Express20142212151901521010.1364/OE.22.01519024977611
    [Google Scholar]
  5. ImmonenE. WongJ. NieminenM. KekkonenL. RoineS. TörnroosS. LancaL. GuanF. MetsäläE. The use of deep learning towards dose optimization in low-dose computed tomography: A scoping review.Radiography202228120821410.1016/j.radi.2021.07.01034325998
    [Google Scholar]
  6. KulathilakeK.A.S.H. AbdullahN.A. SabriA.Q.M. LaiK.W. A review on Deep Learning approaches for low-dose Computed Tomography restoration.Complex & Intelligent Systems2023932713274510.1007/s40747‑021‑00405‑x34777967
    [Google Scholar]
  7. PadoleA. Ali KhawajaR.D. KalraM.K. SinghS. CT radiation dose and iterative reconstruction techniques.AJR Am. J. Roentgenol.20152044W384W39210.2214/AJR.14.1324125794087
    [Google Scholar]
  8. RavishankarS. YeJ.C. FesslerJ.A. Image reconstruction: From sparsity to data-adaptive methods and machine learning.Proc. IEEE202010818610910.1109/JPROC.2019.293620432095024
    [Google Scholar]
  9. SilvaA.C. LawderH.J. HaraA. KujakJ. PavlicekW. Innovations in CT dose reduction strategy: Application of the adaptive statistical iterative reconstruction algorithm.AJR Am. J. Roentgenol.2010194119119910.2214/AJR.09.295320028923
    [Google Scholar]
  10. WangT. LeiY. FuY. WynneJ.F. CurranW.J. LiuT. YangX. A review on medical imaging synthesis using deep learning and its clinical applications.J. Appl. Clin. Med. Phys.2021221113610.1002/acm2.1312133305538
    [Google Scholar]
  11. KangE. YeJ.C. Wavelet domain residual network (WavResNet) for low-dose X-ray CT reconstructionarXiv:1703.013832017
    [Google Scholar]
  12. ZhuB. LiuJ.Z. CauleyS.F. RosenB.R. RosenM.S. Image reconstruction by domain-transform manifold learning.Nature2018555769748749210.1038/nature2598829565357
    [Google Scholar]
  13. GoodfellowI. Pouget-AbadieJ. MirzaM. Generative adversarial nets.Adv. Neural Inf. Process. Syst.20142727
    [Google Scholar]
  14. YouC. CongW. VannierM.W. SahaP.K. HoffmanE.A. WangG. LiG. ZhangY. ZhangX. ShanH. LiM. JuS. ZhaoZ. ZhangZ. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE).IEEE Trans. Med. Imaging202039118820310.1109/TMI.2019.292296031217097
    [Google Scholar]
  15. QuZ. JiangM. SunY. Sparse-view CT reconstruction based on mojette transfrom using convolutional neural network.2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)Venice, Italy, 08-11 April 2019, pp. 1664-1668201910.1109/ISBI.2019.8759546
    [Google Scholar]
  16. YangQ. YanP. ZhangY. YuH. ShiY. MouX. KalraM.K. ZhangY. SunL. WangG. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss.IEEE Trans. Med. Imaging20183761348135710.1109/TMI.2018.282746229870364
    [Google Scholar]
  17. ShanH. PadoleA. HomayouniehF. KrugerU. KheraR.D. NitiwarangkulC. KalraM.K. WangG. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.Nat. Mach. Intell.20191626927610.1038/s42256‑019‑0057‑933244514
    [Google Scholar]
  18. ZhangC. LiY. ChenG.H. Accurate and robust sparse-view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL-PICCS).Med. Phys.202148105765578110.1002/mp.1518334458996
    [Google Scholar]
  19. DonohoD.L. EladM. TemlyakovV.N. Stable recovery of sparse overcomplete representations in the presence of noise.IEEE Trans. Inf. Theory200652161810.1109/TIT.2005.860430
    [Google Scholar]
  20. TsaigY. DonohoD.L. Extensions of compressed sensing.Signal Processing200686354957110.1016/j.sigpro.2005.05.029
    [Google Scholar]
  21. MousaviA. PatelA.B. BaraniukR.G. A deep learning approach to structured signal recovery.2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)Monticello, IL, USA, 29 September 2015 - 02 October 2015, pp. 1336-1343.
    [Google Scholar]
  22. DaveA. VadathyaA.K. MitraK. Compressive image recovery using recurrent generative model.2017 IEEE International Conference on Image Processing (ICIP)Beijing, China, 17-20 September 2017, pp. 1702-1706.
    [Google Scholar]
  23. YaoH. DaiF. ZhangS. ZhangY. TianQ. XuC. DR2-Net: Deep residual reconstruction network for image compressive sensing.Neurocomputing201935948349310.1016/j.neucom.2019.05.006
    [Google Scholar]
  24. KulkarniK. LohitS. TuragaP. ReconNet: Non-iterative reconstruction of images from compressively sensed measurements.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Las Vegas, NV, USA, 27-30 June 2016, pp. 449-458
    [Google Scholar]
  25. ManducaA. YuL. TrzaskoJ.D. KhaylovaN. KoflerJ.M. McColloughC.M. FletcherJ.G. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT.Med. Phys.200936114911491910.1118/1.323200419994500
    [Google Scholar]
  26. YangM. WangJ. ZhangZ. LiJ. LiuL. Transfer learning framework for low-dose CT reconstruction based on marginal distribution adaptation in multiscale.Med. Phys.20235031450146510.1002/mp.1602736321246
    [Google Scholar]
  27. GavrielidesM.A. KinnardL.M. MyersK.J. A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom [J].Optics express.20101814152441525510.1002/mp.1234529027235
    [Google Scholar]
  28. KalendralisP. TraversoA. ShiZ. Multicenter CT phantoms public dataset for radiomics reproducibility test [J].Medical physics20194631512151810.1002/mp.1234529027235
    [Google Scholar]
  29. McColloughC.H. BartleyA.C. CarterR.E. Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 Low Dose CT grand challenge.Med. Phys.20174410e339e35210.1002/mp.1234529027235
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056354972250221012822
Loading
/content/journals/cmir/10.2174/0115734056354972250221012822
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CT; Deep learning; Image reconstruction; Imaging processing; Sparse angular projection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test