Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The objective of this study was to comprehensively review the literature on Shear Wave Elastography (SWE), a non-invasive imaging technique prevalent in medical ultrasound. SWE is instrumental in assessing superficial glandular tissues, abdominal organs, tendons, joints, carotid vessels, and peripheral nerve tissues, among others. By employing bibliometric analysis, we aimed to encapsulate the scholarly contributions over the past two decades, identifying key research areas and tracing the evolutionary trajectory of SWE.

Methods

For this study, we selected research articles related to SWE published between 2004 and March 2024 from the Web of Science Core Collection (WOSCC). We utilized sophisticated bibliometric tools, such as CiteSpace, VOSviewer, and SCImago Graphica, to analyze the trends in annual publications, contributing countries and institutions, journals, authors, co-cited authors, co-cited references, and keywords.

Results

Our analysis yielded a total of 3606 papers. China emerged as the leading country in terms of publication output, with a strong collaborative relationship with the United States. Sun Yat-Sen University was identified as the institution with the highest number of publications. The keyword “transient elastography” was the most prevalent, with “acoustic radiation force” being a focal point in the initial stages of SWE research. Recently, Contrast-enhanced Ultrasound (CEUS) has emerged as a new research focus, signaling a potential direction for future research and development.

Conclusion

The global research landscape for SWE is projected to expand continuously. Future research is likely to concentrate on the integrated application of SWE and CEUS for diagnostic purposes, along with exploring the clinical utility of multimodal ultrasound that synergistically combines SWE with other ultrasound technologies. This bibliometric research offers a comprehensive overview of the SWE literature, guiding researchers in their pursuit of further exploration and discovery.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056353590250109081225
2025-01-01
2025-10-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056353590.html?itemId=/content/journals/cmir/10.2174/0115734056353590250109081225&mimeType=html&fmt=ahah

References

  1. BamberJ. CosgroveD. DietrichC. FromageauJ. BojungaJ. CalliadaF. CantisaniV. CorreasJ.M. D’OnofrioM. DrakonakiE. FinkM. Friedrich-RustM. GiljaO. HavreR. JenssenC. KlauserA. OhlingerR. SaftoiuA. SchaeferF. SporeaI. PiscagliaF. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology.Ultraschall Med.201334216918410.1055/s‑0033‑133520523558397
    [Google Scholar]
  2. TaljanovicM.S. GimberL.H. BeckerG.W. LattL.D. KlauserA.S. MelvilleD.M. GaoL. WitteR.S. Shear-wave elastography: Basic physics and musculoskeletal applications.Radiographics201737385587010.1148/rg.201716011628493799
    [Google Scholar]
  3. CosgroveD. PiscagliaF. BamberJ. BojungaJ. CorreasJ.M. GiljaO. KlauserA. SporeaI. CalliadaF. CantisaniV. D’OnofrioM. DrakonakiE. FinkM. Friedrich-RustM. FromageauJ. HavreR. JenssenC. OhlingerR. SăftoiuA. SchaeferF. DietrichC. EFSUMB EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications.Ultraschall Med.201334323825310.1055/s‑0033‑133537523605169
    [Google Scholar]
  4. CouadeM. PernotM. PradaC. MessasE. EmmerichJ. BrunevalP. CritonA. FinkM. TanterM. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging.Ultrasound Med. Biol.201036101662167610.1016/j.ultrasmedbio.2010.07.00420800942
    [Google Scholar]
  5. MauriceR.L. SoulezG. GirouxM.F. CloutierG. Noninvasive vascular elastography for carotid artery characterization on subjects without previous history of atherosclerosis.Med. Phys.20083583436344310.1118/1.294832018777903
    [Google Scholar]
  6. GulerA.T. WaaijerC.J.F. PalmbladM. Scientific workflows for bibliometrics.Scientometrics2016107238539810.1007/s11192‑016‑1885‑627122644
    [Google Scholar]
  7. DonthuN. KumarS. MukherjeeD. PandeyN. LimW.M. How to conduct a bibliometric analysis: An overview and guidelines.J. Bus. Res.202113328529610.1016/j.jbusres.2021.04.070
    [Google Scholar]
  8. ChenC. SongM. Visualizing a field of research: A methodology of systematic scientometric reviews.PLoS One20191410e022399410.1371/journal.pone.022399431671124
    [Google Scholar]
  9. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑320585380
    [Google Scholar]
  10. AriaM. CuccurulloC. bibliometrix: An R-tool for comprehensive science mapping analysis.J. Informetrics201711495997510.1016/j.joi.2017.08.007
    [Google Scholar]
  11. WaqasA. TeohS.H. LapãoL.V. MessinaL.A. CorreiaJ.C. Harnessing telemedicine for the provision of health care: Bibliometric and scientometric analysis.J. Med. Internet Res.20202210e1883510.2196/1883533006571
    [Google Scholar]
  12. EarlyH. AguileraJ. CheangE. McGahanJ. Challenges and considerations when using shear wave elastography to evaluate the transplanted kidney, with pictorial review.J. Ultrasound Med.20173691771178210.1002/jum.1421728471017
    [Google Scholar]
  13. CrezeM. NordezA. SoubeyrandM. RocherL. MaîtreX. BellinM.F. Shear wave sonoelastography of skeletal muscle: Basic principles, biomechanical concepts, clinical applications, and future perspectives.Skeletal Radiol.201847445747110.1007/s00256‑017‑2843‑y29224123
    [Google Scholar]
  14. SongP. ZhaoH. UrbanM.W. ManducaA. PislaruS.V. KinnickR.R. PislaruC. GreenleafJ.F. ChenS. Improved shear wave motion detection using pulse-inversion harmonic imaging with a phased array transducer.IEEE Trans. Med. Imaging201332122299231010.1109/TMI.2013.228090324021638
    [Google Scholar]
  15. WuL. WuY. JinJ. LiX. ZhangN. JieY. ZhengR. ChongY. RenJ. An optimal prognostic model based on multiparameter ultrasound for acute-on-chronic liver failure.Ultrasound Med. Biol.20234992183219010.1016/j.ultrasmedbio.2023.06.01437451951
    [Google Scholar]
  16. BercoffJ. TanterM. FinkM. Supersonic shear imaging: A new technique for soft tissue elasticity mapping.IEEE Trans. Ultrason. Ferroelectr. Freq. Control200451439640910.1109/TUFFC.2004.129542515139541
    [Google Scholar]
  17. SigristR.M.S. LiauJ. KaffasA.E. ChammasM.C. WillmannJ.K. Ultrasound elastography: Review of techniques and clinical applications.Theranostics2017751303132910.7150/thno.1865028435467
    [Google Scholar]
  18. CasteraL. FornsX. AlbertiA. Non-invasive evaluation of liver fibrosis using transient elastography.J. Hepatol.200848583584710.1016/j.jhep.2008.02.00818334275
    [Google Scholar]
  19. ZiolM. Handra-LucaA. KettanehA. ChristidisC. MalF. KazemiF. de LédinghenV. MarcellinP. DhumeauxD. TrinchetJ.C. BeaugrandM. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic Hepatitis C.Hepatology2005411485410.1002/hep.2050615690481
    [Google Scholar]
  20. Friedrich-RustM. OngM.F. MartensS. SarrazinC. BojungaJ. ZeuzemS. HerrmannE. Performance of transient elastography for the staging of liver fibrosis: A meta-analysis.Gastroenterology20081344960974.e810.1053/j.gastro.2008.01.03418395077
    [Google Scholar]
  21. European Association for Study of LiverAsociacion Latinoamericana para el Estudio del HigadoEASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis.J. Hepatol.201563123726410.1016/j.jhep.2015.04.00625911335
    [Google Scholar]
  22. LeungV.Y. ShenJ. WongV.W. AbrigoJ. WongG.L. ChimA.M. ChuS.H. ChanA.W. ChoiP.C. AhujaA.T. ChanH.L. ChuW.C. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: Comparison of shear-wave elastography and transient elastography with liver biopsy correlation.Radiology2013269391091810.1148/radiol.1313012823912619
    [Google Scholar]
  23. GuoH.Y. LiaoM. ZhengJ. HuangZ.P. XieS.D. Two-dimensional shear wave elastography utilized in patients with ascites: A more reliable method than transient elastography for noninvasively detecting the liver stiffness—an original study with 170 patients.Ann. Transl. Med.20231128010.21037/atm‑22‑645436819487
    [Google Scholar]
  24. RyuJ. JeongW.K. Current status of musculoskeletal application of shear wave elastography.Ultrasonography201736318519710.14366/usg.1605328292005
    [Google Scholar]
  25. GennissonJ.L. DeffieuxT. FinkM. TanterM. Ultrasound elastography: Principles and techniques.Diagn. Interv. Imaging201394548749510.1016/j.diii.2013.01.02223619292
    [Google Scholar]
  26. NightingaleK.R. PalmeriM.L. NightingaleR.W. TraheyG.E. On the feasibility of remote palpation using acoustic radiation force.J. Acoust. Soc. Am.2001110162563410.1121/1.137834411508987
    [Google Scholar]
  27. BisnarJ.A.V. Gopez-CervantesJ.L. BocoboJ.C. CuaI.H.Y. PolidoW. Comparison of the accuracy of shear wave elastography and acoustic radiation force impulse in determining liver fibrosis among patients with chronic liver disease.Clin. Gastroenterol. Hepatol.201513121310.1016/j.cgh.2014.09.005
    [Google Scholar]
  28. GerberL. KasperD. FittingD. KnopV. VermehrenA. SprinzlK. HansmannM.L. HerrmannE. BojungaJ. AlbertJ. SarrazinC. ZeuzemS. Friedrich-RustM. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.Ultrasound Med. Biol.20154192350235910.1016/j.ultrasmedbio.2015.04.01426116161
    [Google Scholar]
  29. SporeaI BotaS PopescuA JurchisA Gradinaru-TascauO SirliR The feasibility and value of shear-waves ultrasound based elastographic methods for liver fibro-sis evaluation (transient elastography - TE, acoustic radiation force impulse elastography - ARFI, supersonic shear imaging - SSI).J Hepatol.201358S8
    [Google Scholar]
  30. WangB. OuX. YangJ. ZhangH. CuiX.W. DietrichC.F. YiA.J. Contrast-enhanced ultrasound and shear wave elastography in the diagnosis of ACR TI-RADS 4 and 5 category thyroid nodules coexisting with Hashimoto’s thyroiditis.Front. Oncol.202312102230510.3389/fonc.2022.102230536713579
    [Google Scholar]
  31. SidhuS.D. JosephS. DunnE. CuffariC. The utility of contrast enhanced ultrasound and elastography in the early detection of fibro-stenotic ileal strictures in children with Crohn’s disease.Pediatr. Gastroenterol. Hepatol. Nutr.202326419320010.5223/pghn.2023.26.4.19337485027
    [Google Scholar]
  32. HuangZ.R. LiL. HuangH. ChengM.Q. De LiM. GuoH.L. LuR.F. WangW. LiW. Da ChenL. Value of multimodal data from clinical and sonographic parameters in predicting recurrence of hepatocellular carcinoma after curative treatment.Ultrasound Med. Biol.20234981789179710.1016/j.ultrasmedbio.2023.04.00137164891
    [Google Scholar]
  33. TianX.F. YuL.Y. YangD.H. ZuoD. CaoJ.Y. WangY. YangZ.Y. LouW.H. WangW.P. GongW. DongY. Contrast-enhanced ultrasound (CEUS) and shear wave elastography (SWE) features for characterizing serous microcystic adenomas (SMAs): In comparison to pancreatic neuroendocrine tumors (pNETs).Heliyon2024103e2518510.1016/j.heliyon.2024.e2518538327470
    [Google Scholar]
  34. PuccinelliC. PelligraT. LippiI. CitiS. Diagnostic utility of two-dimensional shear wave elastography in nephropathic dogs and its correlation with renal contrast-enhanced ultrasound in course of acute kidney injury.J. Vet. Med. Sci.202385111216122510.1292/jvms.23‑006537793837
    [Google Scholar]
  35. UrhuțM.C. SăndulescuL.D. CiocâlteuA. CazacuS.M. DănoiuS. The clinical value of multimodal ultrasound for the differential diagnosis of hepatocellular carcinoma from other liver tumors in relation to histopathology.Diagnostics (Basel)20231320328810.3390/diagnostics1320328837892109
    [Google Scholar]
  36. WakonigK.M. DommerichS. FischerT. ArensP. HammB. OlzeH. LerchbaumerM.H. The diagnostic performance of multiparametric ultrasound in the qualitative assessment of inconclusive cervical Lymph nodes.Cancers (Basel)20231520503510.3390/cancers1520503537894402
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056353590250109081225
Loading
/content/journals/cmir/10.2174/0115734056353590250109081225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test