Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Accurate determination of tumor boundaries is crucial for staging and treating central lung cancer (CLC).

Objective

This retrospective study aimed to evaluate the feasibility of contrast-free CT radiomics in discriminating CLC tumors from atelectasis.

Methods

A total of 58 patients with CLC and associated lung atelectasis, corresponding to 58 tumors and 58 atelectasis regions, were included. Radiomics features were extracted from tumor and atelectasis areas using contrast-free CT images. The least absolute shrinkage and selection operator (LASSO) identified the most differential radiomics features. A logistic regression model (LR) was established and evaluated using 5-fold cross-validation. Discrimination performance was assessed using the area under the ROC curve (AUC) and decision curve analysis (DCA). Additionally, the potential of visualizing and distinguishing tumors and atelectasis based on contrast-free CT was explored by comparing pixel-level radiomics features with contrast CT.

Results

A total of 1561 radiomics features were extracted, with 356 showing significant statistical differences between tumor and atelectasis. LASSO identified the 10 most differential radiomics features. The LR model trained with these features achieved an AUC of 0.94 (95% CI: 0.89-0.99), sensitivity of 0.88, and specificity of 0.89 in the training group, and an AUC of 0.81 (95% CI: 0.67–0.95), sensitivity of 0.78, and specificity of 0.65 in the validation group. DCA confirmed the clinical utility, and the radiomics feature square_firstorder_10Percentile showed good performance in distinguishing tumors from atelectasis, with consistency to contrast CT.

Conclusion

Contrast-free CT radiomics can effectively discriminate CLC tumors from atelectasis.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056348733250324234338
2025-04-30
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056348733.html?itemId=/content/journals/cmir/10.2174/0115734056348733250324234338&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. LeiterA. VeluswamyR.R. WisniveskyJ.P. The global burden of lung cancer: Current status and future trends.Nat. Rev. Clin. Oncol.202320962463910.1038/s41571‑023‑00798‑337479810
    [Google Scholar]
  3. ChoiH. KimH. ParkC.M. KimY.T. GooJ.M. Central tumor location at chest CT is an adverse prognostic factor for disease-free survival of node-negative early-stage lung adenocarcinomas.Radiology2021299243844710.1148/radiol.202120393733620290
    [Google Scholar]
  4. WangF. SuH. Reconsidering T component of cancer staging for T3/T4 non-small-cell lung cancer with additional nodule.Ther. Adv. Med. Oncol.20221417588359221130502
    [Google Scholar]
  5. GulatiS. Ivic-PavlicicT. JoasilJ. Outcomes in incidentally versus screening detected stage I lung cancer surgery patients.J. Thorac. Oncol.202419458158810.1016/j.jtho.2023.11.008
    [Google Scholar]
  6. StreitA. LampridisS. SeitlingerJ. Resectability versus operability in early-stage non-small cell lung cancer.Curr. Oncol. Rep.2024261556410.1007/s11912‑023‑01477‑3
    [Google Scholar]
  7. GreenO.L. HenkeL.E. HugoG.D. Practical clinical workflows for online and offline adaptive radiation therapy.Semin. Radiat. Oncol.201929321922710.1016/j.semradonc.2019.02.00431027639
    [Google Scholar]
  8. EttingerD.S. WoodD.E. AisnerD.L. AkerleyW. BaumanJ.R. BharatA. BrunoD.S. ChangJ.Y. ChirieacL.R. D’AmicoT.A. DeCampM. DillingT.J. DowellJ. GettingerS. GrotzT.E. GubensM.A. HegdeA. LacknerR.P. LanutiM. LinJ. LooB.W. LovlyC.M. MaldonadoF. MassarelliE. MorgenszternD. NgT. OttersonG.A. PachecoJ.M. PatelS.P. RielyG.J. RiessJ. SchildS.E. ShapiroT.A. SinghA.P. StevensonJ. TamA. TanvetyanonT. YanagawaJ. YangS.C. YauE. GregoryK. HughesM. Non–small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202220549753010.6004/jnccn.2022.002535545176
    [Google Scholar]
  9. McDonaldJ.S. LarsonN.B. SchmitzJ.J. KolbeA.B. HuntC.H. HartmanR.P. HaganJ.B. KallmesD.F. McDonaldR.J. Acute adverse events after iodinated contrast agent administration of 359,977 injections: A single-center retrospective study.Mayo Clin. Proc.202398121820183010.1016/j.mayocp.2023.02.03238043998
    [Google Scholar]
  10. LeeC.C. ChanY.L. WongY.C. NgC.J. ChangC.H. HungC.C. SuT.H. Contrast-enhanced CT and acute kidney injury: Risk stratification by diabetic status and kidney function.Radiology20233075e22232110.1148/radiol.22232137278631
    [Google Scholar]
  11. McDonaldJ.S. LarsonN.B. HaganJ.B. SchmitzJ.J. KolbeA.B. KallmesD.F. McDonaldR.J. Clinical follow-up in patients with moderate or severe allergic-like reactions to iodinated contrast material.J. Am. Coll. Radiol.202320551652310.1016/j.jacr.2023.01.00936934887
    [Google Scholar]
  12. ProsperA.E. KammerM.N. MaldonadoF. AberleD.R. HsuW. Expanding role of advanced image analysis in CT-detected indeterminate pulmonary nodules and early lung cancer characterization.Radiology20233091e22290410.1148/radiol.22290437815447
    [Google Scholar]
  13. WangT. SheY. YangY. LiuX. ChenS. ZhongY. DengJ. ZhaoM. SunX. XieD. ChenC. Radiomics for survival risk stratification of clinical and pathologic stage ia pure-solid non–small cell lung cancer.Radiology2022302242543410.1148/radiol.202121010934726531
    [Google Scholar]
  14. TunaliI. GilliesR.J. SchabathM.B. Application of radiomics and artificial intelligence for lung cancer precision medicine.Cold Spring Harb. Perspect. Med.2021Aug2118a03953710.1101/cshperspect.a039537
    [Google Scholar]
  15. WangT. GongJ. DuanH.H. WangL.J. YeX.D. NieS.D. Correlation between CT based radiomics features and gene expression data in non-small cell lung cancer.J. XRay Sci. Technol.201927577380310.3233/XST‑19052631450540
    [Google Scholar]
  16. LiuP. GuQ. HuX. TanX. LiuJ. XieA. HuangF. Applying a radiomics-based strategy to preoperatively predict lymph node metastasis in the resectable pancreatic ductal adenocarcinoma.J. XRay Sci. Technol.20202861113112110.3233/XST‑20073033074215
    [Google Scholar]
  17. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  18. OwensC. HindochaS. LeeR. MillardT. SharmaB. The lung cancers: Staging and response, CT, 18 F-FDG PET/CT, MRI, DWI: Review and new perspectives.Br. J. Radiol.20239611482022033910.1259/bjr.2022033937097296
    [Google Scholar]
  19. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  20. EngebretsenS. BohlinJ. Statistical predictions with glmnet.Clin. Epigenetics201911112310.1186/s13148‑019‑0730‑131443682
    [Google Scholar]
  21. ChaiR. WangQ. QinP. Differentiating central lung tumors from atelectasis with contrast-enhanced CT-based radiomics features.Biomed. Res. Int.2021552245210.1155/2021/5522452
    [Google Scholar]
  22. YangR.M. LiL. WeiX.H. GuoY.M. HuangY.H. LaiL.S. ChenA.M. LiuG.S. XiongW.F. LuoL.P. JiangX.Q. Differentiation of central lung cancer from atelectasis: Comparison of diffusion-weighted MRI with PET/CT.PLoS One201384e6027910.1371/journal.pone.006027923593186
    [Google Scholar]
  23. ZhangX. FuZ. GongG. WeiH. DuanJ. ChenZ. ChenX. WangR. YinY. Implementation of diffusion-weighted magnetic resonance imaging in target delineation of central lung cancer accompanied with atelectasis in precision radiotherapy.Oncol. Lett.20171432677268210.3892/ol.2017.647928927030
    [Google Scholar]
  24. LeiZ. LouJ. BaoL. Contrast-enhanced ultrasound for needle biopsy of central lung cancer with atelectasis.J. Med. Ultrason.2018453461467
    [Google Scholar]
  25. LiangJ. WangD. LiH. ZhaoS. ChenM. LiH. DingZ. LiuJ. LiuL. Contrast‑enhanced ultrasound for needle biopsy of thoracic lesions.Oncol. Lett.20202047510.3892/ol.2020.1193632863908
    [Google Scholar]
  26. WenL.J. ZhaoQ.Y. YinY.H. WangB. FanM.X. QiY.G. ZhangQ. Application value of double-layer spectral detector CT in differentiating central lung cancer from atelectasis.Ann. Palliat. Med.20221161990199610.21037/apm‑21‑308335817733
    [Google Scholar]
  27. UsudaK. IshikawaM. IwaiS. Combination assessment of diffusion-weighted imaging and T2-weighted imaging is acceptable for the differential diagnosis of lung cancer from benign pulmonary nodules and masses.Cancers2021137
    [Google Scholar]
  28. JagodaP. FleckensteinJ. SonnhoffM. SchneiderG. RuebeC. BueckerA. StroederJ. Diffusion-weighted MRI improves response assessment after definitive radiotherapy in patients with NSCLC.Cancer Imaging20212111510.1186/s40644‑021‑00384‑933478592
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056348733250324234338
Loading
/content/journals/cmir/10.2174/0115734056348733250324234338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test