Skip to content
2000
image of A Comparison of the Diagnostic Value of Multiorgan Point-of-care Ultrasound between High-risk and Medium-to-low-risk Pulmonary Embolism Cases

Abstract

Objective:

This study aimed to explore the diagnostic value of multiorgan (heart, lungs, blood vessels) point-of-care ultrasound (PoCUS) in patients with high-risk and medium-to-low-risk pulmonary embolism (PE).

Methods:

Clinical data of 92 patients with suspected PE, admitted to Hangzhou TCM Hospital affiliated with Zhejiang Chinese Medical University from July 2021 to June 2023, were retrospectively analyzed. According to hemodynamic status, patients were divided into the high-risk (n=28) and the medium-to-low-risk groups (n=64). Using computed tomography (CT) and pulmonary angiography (CTPA) as the gold standard, all patients underwent multiorgan PoCUS examination. The sensitivity, specificity, and accuracy of different methods for diagnosing PE, as well as the time difference between multiorgan PoCUS examination and CTPA, were compared. Differences in measurement values of relevant indicators in all groups were analyzed.

Results:

In the high-risk group of patients, CTPA identified 15 cases of PE. In contrast, the PoCUS examination confirmed PE diagnosis in 14 cases (true positive), while 10 cases were diagnosed as true negative, one case as false negative, and three cases as false positive. In the medium-to-low-risk group, CTPA identified 50 patients with PE, while multiorgan PoCUS confirmed PE diagnosis in 33 cases (true positive), and identified 9 true negative, 17 false negative, and 5 false positive PE cases. Kappa test of the consistency between the results of multiorgan PoCUS and CTPA showed that multiorgan PoCUS had higher sensitivity, negative predictive value, and accuracy in the high-risk group compared to the medium-to-low-risk group (<0.05). Cohen's Kappa value of the high-risk group was 0.710, indicating moderate consistency between PoCUS and CTPA results, while Cohen's Kappa value of 0.231 for the medium and low-risk group indicated poor consistency. There was a significant difference in ultrasound parameters between the high-risk and the medium-to-low-risk group (<0.05). The time required for multiorgan PoCUS in both groups was significantly shorter than that for the CTPA. There was no significant difference in the time required for PoCUS between the two groups (>0.05).

Conclusion:

Multiorgan PoCUS has been found to have higher sensitivity and accuracy in diagnosing patients with high-risk PE compared to those with medium-to-low-risk PE, and a shorter imaging time compared to CTPA.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056344839250120045737
2025-01-27
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056344839250120045737/e15734056344839.html?itemId=/content/journals/cmir/10.2174/0115734056344839250120045737&mimeType=html&fmt=ahah

References

  1. O’Rourke J. MacDonald B. BET 1: Everything in graduation: Arterial/end-tidal CO 2 gradient and the diagnosis of pulmonary embolism. Emerg. Med. J. 2021 38 7 361 363 10.1136/emermed‑2021‑211738.2 34449417
    [Google Scholar]
  2. Abuserewa S.T. Duff R. Incidental diagnosis of pulmonary embolism in asymptomatic patient using endobronchial ultrasound (EBUS) during mediastinal lymphadenopathy assessment. Cureus 2021 13 2 e13404 10.7759/cureus.13404 33758701
    [Google Scholar]
  3. Maitas O. Morin D.P. Editorial commentary: Diagnosis of pulmonary embolism: Know your strengths well, and know your weaknesses better. Trends Cardiovasc. Med. 2022 32 5 269 270 10.1016/j.tcm.2021.08.002 34389409
    [Google Scholar]
  4. Lazarus M.S. Kim Y. Mathai B. Levsky J.M. Freeman L.M. Haramati L.B. Moadel R.M. Diagnostic performance of pulmonary embolism imaging in patients with history of asthma. J. Nucl. Med. 2021 62 3 399 404 10.2967/jnumed.120.242776 32680927
    [Google Scholar]
  5. Falster C. Jacobsen N. Coman K.E. Højlund M. Gaist T.A. Posth S. Møller J.E. Brabrand M. Laursen C.B. Diagnostic accuracy of focused deep venous, lung, cardiac and multiorgan ultrasound in suspected pulmonary embolism: A systematic review and meta-analysis. Thorax 2022 77 7 679 689 10.1136/thoraxjnl‑2021‑216838 34497138
    [Google Scholar]
  6. Swan D. Hitchen S. Klok F.A. Thachil J. The problem of under-diagnosis and over-diagnosis of pulmonary embolism. Thromb. Res. 2019 177 122 129 10.1016/j.thromres.2019.03.012 30889517
    [Google Scholar]
  7. Desai R. Raval M. Adompreh-Fia K.S. Nagarajan J.S. Ghadge N. Vyas A. Jain A. Paul T.K. Sachdeva R. Kumar G. Role of intravascular ultrasound in pulmonary embolism patients undergoing mechanical thrombectomy: A systematic review. Tomography 2023 9 4 1393 1407 10.3390/tomography9040111 37489479
    [Google Scholar]
  8. Fields J.M. Davis J. Girson L. Au A. Potts J. Morgan C.J. Vetter I. Riesenberg L.A. Transthoracic echocardiography for diagnosing pulmonary embolism: A systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2017 30 7 714 723.e4 10.1016/j.echo.2017.03.004 28495379
    [Google Scholar]
  9. Jing L. Song Y. Comparing the diagnostic accuracy of computed tomography vs transoesophageal echocardiography for infective endocarditis − A meta-analysis. Pak. J. Med. Sci. 2022 38 3 3Part-I 736 742 10.12669/pjms.38.3.5139 35480540
    [Google Scholar]
  10. Barrios D. Rosa-Salazar V. Jiménez D. Morillo R. Muriel A. del Toro J. López-Jiménez L. Farge-Bancel D. Yusen R. Monreal M. RIETE investigators Right heart thrombi in pulmonary embolism. Eur. Respir. J. 2016 48 5 1377 1385 10.1183/13993003.01044‑2016 27799388
    [Google Scholar]
  11. Dabbouseh N.M. Patel J.J. Bergl P.A. Role of echocardiography in managing acute pulmonary embolism. Heart 2019 105 23 1785 1792 10.1136/heartjnl‑2019‑314776 31439657
    [Google Scholar]
  12. Konstantinides S.V. Meyer G. Becattini C. Bueno H. Geersing G.J. Harjola V.P. Huisman M.V. Humbert M. Jennings C.S. Jiménez D. Kucher N. Lang I.M. Lankeit M. Lorusso R. Mazzolai L. Meneveau N. Ní Áinle F. Prandoni P. Pruszczyk P. Righini M. Torbicki A. Van Belle E. Zamorano J.L. Galié N. Gibbs J.S.R. Aboyans V. Ageno W. Agewall S. Almeida A.G. Andreotti F. Barbato E. Bauersachs J. Baumbach A. Beygui F. Carlsen J. De Carlo M. Delcroix M. Delgado V. Subias P.E. Fitzsimons D. Gaine S. Goldhaber S.Z. Gopalan D. Habib G. Halvorsen S. Jenkins D. Katus H.A. Kjellström B. Lainscak M. Lancellotti P. Lee G. Le Gal G. Messas E. Morais J. Petersen S.E. Petronio A.S. Piepoli M.F. Price S. Roffi M. Salvi A. Sanchez O. Shlyakhto E. Simpson I.A. Stortecky S. Thielmann M. Noordegraaf A.V. Becattini C. Bueno H. Geersing G-J. Harjola V-P. Huisman M.V. Humbert M. Jennings C.S. Jiménez D. Kucher N. Lang I.M. Lankeit M. Lorusso R. Mazzolai L. Meneveau N. Ní Áinle F. Prandoni P. Pruszczyk P. Righini M. Torbicki A. VanBelle E. LuisZamorano J. Windecker S. Aboyans V. Baigent C. Collet J-P. Dean V. Delgado V. Fitzsimons D. Gale C.P. Grobbee D. Halvorsen S. Hindricks G. Iung B. Jüni P. Katus H.A. Landmesser U. Leclercq C. Lettino M. Lewis B.S. Merkely B. Mueller C. Petersen S.E. Sonia Petronio A. Richter D.J. Roffi M. Shlyakhto E. Simpson I.A. Sousa-Uva M. Touyz R.M. Hammoudi N. Hayrapetyan H. Mascherbauer J. Ibrahimov F. Polonetsky O. Lancellotti P. Tokmakova M. Skoric B. Michaloliakos I. Hutyra M. Mellemkjaer S. Mostafa M. Reinmets J. Jääskeläinen P. Angoulvant D. Bauersachs J. Giannakoulas G. Zima E. Vizza C.D. Sugraliyev A. Bytyçi I. Maca A. Ereminiene E. Huijnen S. Xuereb R. Diaconu N. Bulatovic N. Asfalou I. Bosevski M. Halvorsen S. Sobkowicz B. Ferreira D. Petris A.O. Moiseeva O. Zavatta M. Obradovic S. Šimkova I. Radsel P. Ibanez B. Wikström G. Aujesky D. Kaymaz C. Parkhomenko A. Pepke-Zaba J. ESC Scientific Document Group 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the european respiratory society (ERS). Eur. Heart J. 2020 41 4 543 603 10.1093/eurheartj/ehz405 31504429
    [Google Scholar]
  13. Bacani J.B. De Wit K. Point of care ultrasound versus CT pulmonary angiogram in suspected pulmonary embolus. Emerg. Med. J. 2017 34 7 487.2 489 10.1136/emermed‑2017‑206911.1 28652286
    [Google Scholar]
  14. Bailis N. Lerche M. Meyer H.J. Wienke A. Surov A. Contrast reflux into the inferior vena cava on computer tomographic pulmonary angiography is a predictor of 24-hour and 30-day mortality in patients with acute pulmonary embolism. Acta Radiol. 2021 62 1 34 41 10.1177/0284185120912506 32241170
    [Google Scholar]
  15. Santangelo G. Toriello F. Faggiano A. Henein M.Y. Carugo S. Faggiano P. Role of cardiac and lung ultrasound in the COVID-19 era. Minerva. Cardiol. Angiol. 2023 71 4 387 401 10.23736/S2724‑5683.22.06074‑4 35767237
    [Google Scholar]
  16. Aquino-Jose V.M. Johnson S. Quinn M. Havryliuk T. Arterial gas emboli secondary to portal venous gas diagnosed with point-of-care ultrasound: Case report and literature review. J. Emerg. Med. 2020 59 6 906 910 10.1016/j.jemermed.2020.06.060 32771317
    [Google Scholar]
  17. Ruiz Avila H.A. García-Araque H.F. Acosta-Gutiérrez E. Paradoxical venous air embolism detected with point-of-care ultrasound: A case report. Ultrasound J. 2022 14 1 19 10.1186/s13089‑022‑00265‑7 35583704
    [Google Scholar]
  18. Straube F. Pongratz J. Hartl S. Brueck B. Tesche C. Ebersberger U. Helmberger T. Crispin A. Wankerl M. Dorwarth U. Hoffmann E. Cardiac computed tomography angiography‐derived analysis of left atrial appendage morphology and left atrial dimensions for the prediction of atrial fibrillation recurrence after pulmonary vein isolation. Clin. Cardiol. 2021 44 11 1636 1645 10.1002/clc.23743 34651337
    [Google Scholar]
  19. Ken Lee K. Wereski R. Williams M.C. Mills N.L. Population screening with coronary computed tomography angiography and the prevention of coronary events. Circulation 2021 144 12 930 933 10.1161/CIRCULATIONAHA.121.055784 34543070
    [Google Scholar]
  20. Tse J.R. Shen J. Shah R. Fleischmann D. Kamaya A. Extravasation volume at computed tomography angiography correlates with bleeding rate and prognosis in patients with overt gastrointestinal bleeding. Invest. Radiol. 2021 56 6 394 400 10.1097/RLI.0000000000000753 33449577
    [Google Scholar]
  21. Mumoli N. Vitale J. Pagnamenta A. Mastroiacovo D. Cei M. Pomero F. Giorgi-Pierfranceschi M. Giuntini L. Porta C. Capra R. Mazzone A. Dentali F. Bedside abdominal ultrasound in evaluating nasogastric tube placement. Chest 2021 159 6 2366 2372 10.1016/j.chest.2021.01.058 33545162
    [Google Scholar]
  22. Sharif D. Editorial commentary: Coronary computed tomography angiography (CTA): Implications and challenges. Trends Cardiovasc. Med. 2022 32 7 429 430 10.1016/j.tcm.2021.09.003 34508850
    [Google Scholar]
  23. Chen Y. Peng L. Liu M. Shen H. Luo D. Diagnostic value of transperineal ultrasound in patients with stress urinary incontinence (SUI): A systematic review and meta-analysis. World J. Urol. 2023 41 3 687 693 10.1007/s00345‑022‑04264‑0 36598556
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056344839250120045737
Loading
/content/journals/cmir/10.2174/0115734056344839250120045737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test