Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The basal ganglia area is a frequent site of stroke, which commonly causes intricate functional impairments. This study aims to uncover disparities in static and dynamic functional connectivity (FC) of the brain in patients afflicted with left-sided basal ganglia stroke (L-BGS) and right-sided basal ganglia region stroke (R-BGS), furthermore scrutinising the mechanism behind the lateralisation of the stroke.

Methods

A total of 23 patients with L-BGS and 20 patients with R-BGS were recruited, alongside 20 healthy control subjects. Resting-state functional magnetic resonance imaging and sliding window techniques were employed to conduct static and dynamic FC analyses on both patient groups and controls, which can enable a more refined evaluation of the variations in neural signals.

Results

The inter-network connectivity analysis showed significant changes only in the L-BGS patient group ( 0.05). The R-BGS group showed increased connectivity in the auditory and posterior visual networks, while the L-BGS group showed reduced connectivity. In dynamic connectivity analyses, the L-BGS group exhibited greater positive network connectivity reorganization.

Conclusion

Within one month of stroke onset, the L-BGS group showed a more pronounced impairment of inter-network connectivity, alongside enhanced FC compensatory changes of a positive nature. Differential changes in the two patient groups may provide useful information for individualized rehabilitation strategies.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056344477250222060225
2025-01-01
2025-10-20
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056344477.html?itemId=/content/journals/cmir/10.2174/0115734056344477250222060225&mimeType=html&fmt=ahah

References

  1. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  2. GerstlJ.V.E. BlitzS.E. QuQ.R. YearleyA.G. LassarénP. LindbergR. GuptaS. KappelA.D. Vicenty-PadillaJ.C. GaudeE. AtchaneeyasakulK.C. DesaiS.M. YavagalD.R. Peruzzotti-JamettiL. PatelN.J. Aziz-SultanM.A. DuR. SmithT.R. BernstockJ.D. Global, regional, and national economic consequences of stroke.Stroke20235492380238910.1161/STROKEAHA.123.04313137497672
    [Google Scholar]
  3. MeadG.E. SposatoL.A. Sampaio SilvaG. YperzeeleL. WuS. KutlubaevM. CheyneJ. WahabK. UrrutiaV.C. SharmaV.K. SylajaP.N. HillK. SteinerT. LiebeskindD.S. RabinsteinA.A. A systematic review and synthesis of global stroke guidelines on behalf of the world stroke organization.Int. J. Stroke202318549953110.1177/1747493023115675336725717
    [Google Scholar]
  4. DragoșH.M. StanA. PinticanR. FeierD. LeboviciA. PanaitescuP.Ș. DinaC. StrilciucS. MuresanuD.F. MRI radiomics and predictive models in assessing ischemic stroke outcome—A systematic review.Diagnostics202313585710.3390/diagnostics1305085736900001
    [Google Scholar]
  5. YassiN. ChurilovL. CampbellB.C.V. SharmaG. BammerR. DesmondP.M. ParsonsM.W. AlbersG.W. DonnanG.A. DavisS.M. The association between lesion location and functional outcome after ischemic stroke.Int. J. Stroke20151081270127610.1111/ijs.1253726045301
    [Google Scholar]
  6. SagnierS. MunschF. BigourdanA. DebruxellesS. PoliM. RenouP. OlindoS. RouanetF. DoussetV. TourdiasT. SibonI. The influence of stroke location on cognitive and mood impairment. A voxel-based lesion-symptom mapping study.J. Stroke Cerebrovasc. Dis.20192851236124210.1016/j.jstrokecerebrovasdis.2019.01.01030718064
    [Google Scholar]
  7. MunschF. SagnierS. AsselineauJ. BigourdanA. GuttmannC.R. DebruxellesS. PoliM. RenouP. PerezP. DoussetV. SibonI. TourdiasT. Stroke location is an independent predictor of cognitive outcome.Stroke2016471667310.1161/STROKEAHA.115.01124226585396
    [Google Scholar]
  8. ZhuH. ZuoL. ZhuW. JingJ. ZhangZ. DingL. WangF. ChengJ. WuZ. WangY. LiuT. LiZ. The distinct disrupted plasticity in structural and functional network in mild stroke with basal ganglia region infarcts.Brain Imaging Behav.20221652199221910.1007/s11682‑022‑00689‑835665464
    [Google Scholar]
  9. ZuoL. DongY. HuY. XiangX. LiuT. ZhouJ. ShiJ. WangY. Clinical features, brain-structure changes, and cognitive impairment in basal ganglia infarcts: A pilot study.Neuropsychiatr. Dis. Treat.2023191171118010.2147/NDT.S38472637197329
    [Google Scholar]
  10. WeaverN.A. KuijfH.J. AbenH.P. AbrigoJ. BaeH.J. BarbayM. BestJ.G. BordetR. ChappellF.M. ChenC.P.L.H. DondaineT. van der GiessenR.S. GodefroyO. GyanwaliB. HamiltonO.K.L. HilalS. Huenges WajerI.M.C. KangY. KappelleL.J. KimB.J. KöhlerS. de KortP.L.M. KoudstaalP.J. KuchcinskiG. LamB.Y.K. LeeB.C. LeeK.J. LimJ.S. LopesR. MakinS.D.J. MendykA.M. MokV.C.T. OhM.S. van OostenbruggeR.J. RousselM. ShiL. StaalsJ. del C Valdés-HernándezM. VenketasubramanianN. VerheyF.R.J. WardlawJ.M. WerringD.J. XinX. YuK.H. van ZandvoortM.J.E. ZhaoL. BiesbroekJ.M. BiesselsG.J. Strategic infarct locations for post-stroke cognitive impairment: A pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts.Lancet Neurol.202120644845910.1016/S1474‑4422(21)00060‑033901427
    [Google Scholar]
  11. LangerK.G. BogousslavskyJ. The merging tracks of anosognosia and neglect.Eur. Neurol.202083443844610.1159/00051039732927461
    [Google Scholar]
  12. SpanòB. NardoD. GiuliettiG. MatanoA. SalsanoI. BrianiC. VadalàR. MarziC. De LucaM. CaltagironeC. SantangeloV. Left egocentric neglect in early subacute right-stroke patients is related to damage of the superior longitudinal fasciculus.Brain Imaging Behav.202216121121810.1007/s11682‑021‑00493‑w34328618
    [Google Scholar]
  13. LafitteR. JeagerM. PiscicelliC. DaiS. LemaireC. ChrispinA. DavoineP. DupierrixE. PérennouD. Spatial neglect encompasses impaired verticality representation after right hemisphere stroke.Ann. N. Y. Acad. Sci.20231520114015210.1111/nyas.1493836478572
    [Google Scholar]
  14. RaimondoL. OliveiraA.F. HeijJ. PriovoulosN. KunduP. LeoniR.F. van der ZwaagW. Advances in resting state fMRI acquisitions for functional connectomics.Neuroimage202124311850310.1016/j.neuroimage.2021.11850334479041
    [Google Scholar]
  15. YueX. LiZ. LiY. GaoJ. HanH. ZhangG. LiX. ShenY. WeiW. BaiY. XieJ. LuoZ. ZhangX. WangM. Altered static and dynamic functional network connectivity in post-stroke cognitive impairment.Neurosci. Lett.202379913709710.1016/j.neulet.2023.13709736716911
    [Google Scholar]
  16. LiF. LuL. ShangS. ChenH. WangP. MuthaiahV.P. YinX. ChenY.C. Altered static and dynamic functional network connectivity in post-traumatic headache.J. Headache Pain202122113710.1186/s10194‑021‑01348‑x34773973
    [Google Scholar]
  17. CalhounV.D. MillerR. PearlsonG. AdalıT. The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery.Neuron201484226227410.1016/j.neuron.2014.10.01525374354
    [Google Scholar]
  18. RahamanM.A. DamarajuE. SahaD.K. PlisS.M. CalhounV.D. Statelets: Capturing recurrent transient variations in dynamic functional network connectivity.Hum. Brain Mapp.20224382503251810.1002/hbm.2579935274791
    [Google Scholar]
  19. VidaurreD. LleraA. SmithS.M. WoolrichM.W. Behavioural relevance of spontaneous, transient brain network interactions in fMRI.Neuroimage202122911771310.1016/j.neuroimage.2020.11771333421594
    [Google Scholar]
  20. LiuY. ZhaoX. TangQ. LiW. LiuG. Dynamic functional network connectivity associated with musical emotions evoked by different Tempi.Brain Connect.202212658459710.1089/brain.2021.006934309409
    [Google Scholar]
  21. LurieD.J. KesslerD. BassettD.S. BetzelR.F. BreakspearM. KheilholzS. KucyiA. LiégeoisR. LindquistM.A. McIntoshA.R. PoldrackR.A. ShineJ.M. ThompsonW.H. BielczykN.Z. DouwL. KraftD. MillerR.L. MuthuramanM. PasquiniL. RaziA. VidaurreD. XieH. CalhounV.D. Questions and controversies in the study of time-varying functional connectivity in resting fMRI.Netw. Neurosci.202041306910.1162/netn_a_0011632043043
    [Google Scholar]
  22. LiY. QinB. ChenQ. ChenJ. Altered dynamic functional network connectivity within default mode network of epileptic children with generalized tonic-clonic seizures.Epilepsy Res.202218410696910.1016/j.eplepsyres.2022.10696935738202
    [Google Scholar]
  23. EspinozaF.A. LiuJ. CiarochiJ. TurnerJ.A. VergaraV.M. CaprihanA. MisiuraM. JohnsonH.J. LongJ.D. BockholtJ.H. PaulsenJ.S. CalhounV.D. Dynamic functional network connectivity in Huntington’s disease and its associations with motor and cognitive measures.Hum. Brain Mapp.20194061955196810.1002/hbm.2450430618191
    [Google Scholar]
  24. BonkhoffA.K. EspinozaF.A. GazulaH. VergaraV.M. HenselL. MichelyJ. PaulT. RehmeA.K. VolzL.J. FinkG.R. CalhounV.D. GrefkesC. Acute ischaemic stroke alters the brain’s preference for distinct dynamic connectivity states.Brain202014351525154010.1093/brain/awaa10132357220
    [Google Scholar]
  25. van der HornH.J. VergaraV.M. EspinozaF.A. CalhounV.D. MayerA.R. van der NaaltJ. Functional outcome is tied to dynamic brain states after mild to moderate traumatic brain injury.Hum. Brain Mapp.202041361763110.1002/hbm.2482731633256
    [Google Scholar]
  26. SalmanM.S. DuY. LinD. FuZ. FedorovA. DamarajuE. SuiJ. ChenJ. MayerA.R. PosseS. MathalonD.H. FordJ.M. Van ErpT. CalhounV.D. Group ICA for identifying biomarkers in schizophrenia: ‘Adaptive’ networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression.Neuroimage Clin.20192210174710.1016/j.nicl.2019.10174730921608
    [Google Scholar]
  27. WangC. QinW. ZhangJ. TianT. LiY. MengL. ZhangX. YuC. Altered functional organization within and between resting-state networks in chronic subcortical infarction.J. Cereb. Blood Flow Metab.201434459760510.1038/jcbfm.2013.23824398939
    [Google Scholar]
  28. WangS. CaiH. CaoZ. LiC. WuT. XuF. QianY. ChenX. YuY. More than just static: Dynamic functional connectivity changes of the thalamic nuclei to cortex in parkinson’s disease with freezing of gait.Front. Neurol.20211273599910.3389/fneur.2021.73599934721266
    [Google Scholar]
  29. MaZ.Z. WuJ.J. HuaX.Y. ZhengM.X. XingX.X. LiS.S. ShanC.L. DingW. XuJ.G. Tracking whole-brain connectivity dynamics in the resting-state fMRI with post-facial paralysis synkinesis.Brain Res. Bull.202117310811510.1016/j.brainresbull.2021.04.02533933525
    [Google Scholar]
  30. ZhouQ. ZhangL. FengJ. LoC.Y.Z. Tracking the main states of dynamic functional connectivity in resting state.Front. Neurosci.20191368510.3389/fnins.2019.0068531338016
    [Google Scholar]
  31. VicentiniJ.E. WeilerM. CassebR.F. AlmeidaS.R. VallerL. de CamposB.M. LiL.M. Subacute functional connectivity correlates with cognitive recovery six months after stroke.Neuroimage Clin.20212910253810.1016/j.nicl.2020.10253833385880
    [Google Scholar]
  32. CaiS. ChongT. PengY. ShenW. LiJ. von DeneenK.M. HuangL. Altered functional brain networks in amnestic mild cognitive impairment: A resting-state fMRI study.Brain Imaging Behav.201711361963110.1007/s11682‑016‑9539‑026972578
    [Google Scholar]
  33. ZhaoZ. WuJ. FanM. YinD. TangC. GongJ. XuG. GaoX. YuQ. YangH. SunL. JiaJ. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke.Hum. Brain Mapp.20183983388339710.1002/hbm.2418329691945
    [Google Scholar]
  34. ZuoL.J. LiZ.X. ZhuR.Y. ChenY.J. DongY. WangY.L. ZhaoX.Q. ZhangZ.J. SachdevP. ZhangW. WangY.J. The relationship between cerebral white matter integrity and cognitive function in mild stroke with basal ganglia region infarcts.Sci. Rep.201881842210.1038/s41598‑018‑26316‑529849078
    [Google Scholar]
  35. BhatiaK.P. MarsdenC.D. The behavioural and motor consequences of focal lesions of the basal ganglia in man.Brain1994117485987610.1093/brain/117.4.8597922471
    [Google Scholar]
  36. StarksteinS.E. JorgeR.E. RobinsonR.G. The frequency, clinical correlates, and mechanism of anosognosia after stroke.Can. J. Psychiatry201055635536110.1177/07067437100550060420540830
    [Google Scholar]
  37. DesowskaA. TurnerD.L. Dynamics of brain connectivity after stroke.Rev. Neurosci.201930660562310.1515/revneuro‑2018‑008230768425
    [Google Scholar]
  38. LiQ.G. ZhaoC. ShanY. YinY.Y. RongD.D. ZhangM. MaQ.F. LuJ. Dynamic neural network changes revealed by voxel-based functional connectivity strength in left basal ganglia ischemic stroke.Front. Neurosci.20201452664510.3389/fnins.2020.52664533071728
    [Google Scholar]
  39. LiZ. HuJ. WangZ. YouR. CaoD. Basal ganglia stroke is associated with altered functional connectivity of the left inferior temporal gyrus.J. Neuroimaging202232474475110.1111/jon.1297835175633
    [Google Scholar]
  40. ZhangX. YangY. KuaiH. ChenJ. HuangJ. LiangP. ZhongN. Systematic fusion of multi-source cognitive networks with graph learning - A study on fronto-parietal network.Front. Neurosci.20221686673410.3389/fnins.2022.86673435968385
    [Google Scholar]
  41. CaldinelliC. CusackR. The fronto-parietal network is not a flexible hub during naturalistic cognition.Hum. Brain Mapp.202243275075910.1002/hbm.2568434652872
    [Google Scholar]
  42. BraaßH. GutgesellL. BackhausW. HiggenF.L. QuandtF. ChoeC. GerloffC. SchulzR. Early functional connectivity alterations in contralesional motor networks influence outcome after severe stroke: A preliminary analysis.Sci. Rep.20231311101010.1038/s41598‑023‑38066‑037419966
    [Google Scholar]
  43. RehmeA.K. EickhoffS.B. RottschyC. FinkG.R. GrefkesC. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke.Neuroimage20125932771278210.1016/j.neuroimage.2011.10.02322023742
    [Google Scholar]
  44. RehmeA.K. FinkG.R. von CramonD.Y. GrefkesC. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI.Cereb. Cortex201121475676810.1093/cercor/bhq14020801897
    [Google Scholar]
  45. BonkhoffA.K. SchirmerM.D. BretznerM. EthertonM. DonahueK. TuozzoC. NardinM. GieseA.K. WuO. D CalhounV. GrefkesC. RostN.S. Abnormal dynamic functional connectivity is linked to recovery after acute ischemic stroke.Hum. Brain Mapp.20214272278229110.1002/hbm.2536633650754
    [Google Scholar]
  46. LefaucheurJ.P. AlemanA. BaekenC. BenningerD.H. BrunelinJ. Di LazzaroV. FilipovićS.R. GrefkesC. HasanA. HummelF.C. JääskeläinenS.K. LangguthB. LeocaniL. LonderoA. NardoneR. NguyenJ.P. NyffelerT. Oliveira-MaiaA.J. OlivieroA. PadbergF. PalmU. PaulusW. PouletE. QuartaroneA. RachidF. RektorováI. RossiS. SahlstenH. SchecklmannM. SzekelyD. ZiemannU. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018).Clin. Neurophysiol.2020131247452810.1016/j.clinph.2019.11.00231901449
    [Google Scholar]
  47. EspositoS. TrojsiF. CirilloG. de StefanoM. Di NardoF. SicilianoM. CaiazzoG. IppolitoD. RicciardiD. BuonannoD. AtripaldiD. PepeR. D’AlvanoG. MangioneA. BonavitaS. SantangeloG. IavaroneA. CirilloM. EspositoF. SorbiS. TedeschiG. Repetitive transcranial magnetic stimulation (rTMS) of dorsolateral prefrontal cortex may influence semantic fluency and functional connectivity in fronto-parietal network in mild cognitive impairment (MCI).Biomedicines202210599410.3390/biomedicines1005099435625731
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056344477250222060225
Loading
/content/journals/cmir/10.2174/0115734056344477250222060225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test