Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Magnetic resonance imaging can differentiate Alzheimer-type dementia from dementia with Lewy bodies using voxel-based specific regional analysis systems for Alzheimer’s disease and arterial spin labeling, which reveal reduced blood flow from the posterior cingulate gyrus to the precuneus in Alzheimer-type dementia. However, the relationship between voxel-based specific regional analysis system scores and arterial spin labeling remains unclear. To investigate the relationship between brain atrophy scores and arterial spin labeling values in the posterior cingulate precuneus.

Methods

Participants with suspected dementia who underwent brain magnetic resonance imaging using a voxel-based regional analysis system were included. They were classified as follows: Group 1 (suspected Alzheimer-type dementia) had atrophy ≥2 in the volume of interest; Group 2 (suspected dementia with Lewy body) had atrophy <2 in the volume of interest and ≥0.2 in the gray and white matter of the dorsal brainstem; and Group 3 included those not meeting these criteria. Correlation values among atrophy within the volume of interest, percentage of atrophic areas, atrophy ratio, percentage of total brain atrophy, age, and maximum arterial spin labeling value at the posterior cingulate precuneus were evaluated.

Results

Groups 1, 2, and 3 comprised 179, 143, and 197 patients, respectively. Arterial spin labeling values at the posterior cingulate precuneus were 77.0±24.4–77.3±25.2, 78.3±81.3–80.2±23.6, and 80.2±22.3–80.4±22.8 mL/min/100 g, respectively. Group 1 had a correlation coefficient between total brain atrophy and arterial spin labeling of –0.189 to–0.214 (P<0.01). Group 2 had a correlation coefficient between total brain atrophy and arterial spin labeling of –0.215 to –0.223 (P<0.01). Group 3 showed no significant correlations. No statistically significant difference was observed in ASL 1 and 2 values between the Alzheimer-type dementia and other groups (ASL 1: 74.5 mL/min/100 g . 78.8 mL/min/100 g, P=0.08; ASL 2: 74.8 mL/min/100 g . 79.2 mL/min/100 g, P=0.101). No statistically significant difference was observed in ASL 1 and 2 values between the Alzheimer-type dementia and DLB groups (ASL 1: 74.5 mL/min/100 g . 69.3. mL/min/100 g, P=0.093; ASL 2: 74.8 mL/min/100 g . 78.9 mL/min/100 g, P=0.258).

Discussion

Reduced blood flow in the posterior cingulate gyrus and precuneus shows only a weak correlation with brain atrophy in both Alzheimer-type dementia and dementia with Lewy bodies. Therefore, it is not a reliable marker for differentiating Alzheimer-type dementia from dementia with Lewy bodies and other groups.

Conclusion

It is necessary to avoid using cerebral blood flow assessment alone when diagnosing dementia.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056337828250526070304
2025-07-10
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056337828.html?itemId=/content/journals/cmir/10.2174/0115734056337828250526070304&mimeType=html&fmt=ahah

References

  1. GaleS.A. AcarD. DaffnerK.R. Dementia.Am. J. Med.2018131101161116910.1016/j.amjmed.2018.01.02229425707
    [Google Scholar]
  2. MinoshimaS. FosterN.L. KuhlD.E. Posterior cingulate cortex in Alzheimer’s disease.Lancet1994344892689510.1016/S0140‑6736(94)92871‑17916431
    [Google Scholar]
  3. AlsopD.C. DaiW. GrossmanM. DetreJ.A. Arterial spin labeling blood flow MRI: Its role in the early characterization of Alzheimer’s disease.J. Alzheimers Dis.201020387188010.3233/JAD‑2010‑09169920413865
    [Google Scholar]
  4. ZhangX.Y. ZhangH. BaoQ.N. YinZ.H. LiY.Q. XiaM.Z. ChenZ.H. ZhongW.Q. WuK.X. YaoJ. LiangF.R. Diagnostic value of arterial spin labeling for Alzheimer’s disease: A systematic review and meta-analysis.PLoS One20241911e031101610.1371/journal.pone.031101639570963
    [Google Scholar]
  5. KatabathulaS. WangQ. XuR. Predict Alzheimer’s disease using hippocampus MRI data: A lightweight 3D deep convolutional network model with visual and global shape representations.Alzheimers Res. Ther.202113110410.1186/s13195‑021‑00837‑034030743
    [Google Scholar]
  6. HirataY. MatsudaH. NemotoK. OhnishiT. HiraoK. YamashitaF. AsadaT. IwabuchiS. SamejimaH. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls.Neurosci. Lett.2005382326927410.1016/j.neulet.2005.03.03815925102
    [Google Scholar]
  7. MatsudaH. YokoyamaK. SatoN. ItoK. NemotoK. ObaH. HanyuH. KanetakaH. MizumuraS. KitamuraS. ShinotohH. ShimadaH. SuharaT. TeradaH. NakatsukaT. KawakatsuS. HayashiH. AsadaT. OnoT. GotoT. ShigemoriK. Differentiation between dementia with Lewy bodies and Alzheimer’s disease using voxel-based morphometry of structural MRI: A multicenter study.Neuropsychiatr. Dis. Treat.2019152715272210.2147/NDT.S22296631571887
    [Google Scholar]
  8. OkadaY. OhnoN. TanakaK. Correlation between Alzheimer’s disease and dementia with Lewy bodies scores using VSRAD advance.Adv. Alzheimer Dis.2021103334510.4236/aad.2021.103003
    [Google Scholar]
  9. YoshidaN. KageyamaH. AkaiH. YasakaK. SugawaraH. OkadaY. KunimatsuA. Motion correction in MR image for analysis of VSRAD using generative adversarial network.PLoS One2022179e027457610.1371/journal.pone.027457636103561
    [Google Scholar]
  10. ShinoharaY. TohgiH. HiraiS. TerashiA. FukuuchiY. YamaguchiT. OkuderaT. Effect of the Ca antagonist nilvadipine on stroke occurrence or recurrence and extension of asymptomatic cerebral infarction in hypertensive patients with or without history of stroke (PICA Study). 1. Design and results at enrollment.Cerebrovasc. Dis.2007242-320220910.1159/00010447817596689
    [Google Scholar]
  11. Summary of diagnostic imaging.2016Available from: https://xn--o1qq22cjlllou16giuj.jp/archives/5592
  12. KandaY. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics.Bone Marrow Transplant.201348345245810.1038/bmt.2012.24423208313
    [Google Scholar]
  13. MatsudaH. MizumuraS. NemotoK. YamashitaF. ImabayashiE. SatoN. AsadaT. Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable alzheimer disease.AJNR Am. J. Neuroradiol.20123361109111410.3174/ajnr.A293522300935
    [Google Scholar]
  14. TokumitsuK. Yasui-FurukoriN. TakeuchiJ. YachimoriK. SugawaraN. TerayamaY. TanakaN. NaraokaT. ShimodaK. The combination of MMSE with VSRAD and eZIS has greater accuracy for discriminating mild cognitive impairment from early Alzheimer’s disease than MMSE alone.PLoS One2021162e024742710.1371/journal.pone.024742733617587
    [Google Scholar]
  15. OshikuboG. AkahaneA. UnnoA. WatanabeY. IkebuchiE. TochigiM. HayashiN. Utility of VSRAD for diagnosing Alzheimer’s disease in patients screened for dementia.J. Int. Med. Res.2020484030006052091727010.1177/030006052091727032299274
    [Google Scholar]
  16. EgashiraR. UmezakiY. MizutaniS. ObataT. YamaguchiM. TamaiK. YoshidaM. MakinoM. NaitoT. Relationship between cerebral atrophy and number of present teeth in elderly individuals with cognitive decline.Exp. Gerontol.202114411118910.1016/j.exger.2020.11118933285222
    [Google Scholar]
  17. KamiyamaK. WadaA. SugiharaM. KuriokaS. HayashiK. HayashiT. YoshisakoT. YamamotoN. TsuchieY. YamaguchiS. SugimotoT. KitagakiH. Potential hippocampal region atrophy in diabetes mellitus type 2: A voxel-based morphometry VSRAD study.Jpn. J. Radiol.201028426627210.1007/s11604‑009‑0416‑220512543
    [Google Scholar]
  18. SatohM. OgawaJ. TokitaT. NakaguchiN. NakaoK. KidaH. TomimotoH. The effects of physical exercise with music on cognitive function of elderly people: Mihama-Kiho project.PLoS One201494e9523010.1371/journal.pone.009523024769624
    [Google Scholar]
  19. SatohM. OgawaJ. TokitaT. MatsumotoY. NakaoK. TabeiK. KatoN. TomimotoH. The effects of a 5-year physical exercise intervention with music in community- dwelling normal elderly people: The mihama-kiho follow-up project.J. Alzheimers Dis.20207841493150710.3233/JAD‑20048033185595
    [Google Scholar]
  20. YoshiuraT. HiwatashiA. NoguchiT. YamashitaK. OhyagiY. MonjiA. NagaoE. KamanoH. TogaoO. HondaH. Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease.Eur. Radiol.200919122819282510.1007/s00330‑009‑1511‑619588145
    [Google Scholar]
  21. MusiekE.S. ChenY. KorczykowskiM. SabouryB. MartinezP.M. ReddinJ.S. AlaviA. KimbergD.Y. WolkD.A. JulinP. NewbergA.B. ArnoldS.E. DetreJ.A. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease.Alzheimers Dement.201281515910.1016/j.jalz.2011.06.00322018493
    [Google Scholar]
  22. BinnewijzendM.A.A. KuijerJ.P.A. BenedictusM.R. van der FlierW.M. WinkA.M. WattjesM.P. van BerckelB.N.M. ScheltensP. BarkhofF. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: A marker for disease severity.Radiology2013267122123010.1148/radiol.1212092823238159
    [Google Scholar]
  23. HeronC.J.L. WrightS.L. MelzerT.R. MyallD.J. MacAskillM.R. LivingstonL. KeenanR.J. WattsR. Dalrymple-AlfordJ.C. AndersonT.J. Comparing cerebral perfusion in Alzheimer’s disease and Parkinson’s disease dementia: An ASL-MRI study.J. Cereb. Blood Flow Metab.201434696497010.1038/jcbfm.2014.4024619276
    [Google Scholar]
  24. XekardakiA. RodriguezC. MontandonM.L. TomaS. TombeurE. HerrmannF.R. ZekryD. LovbladK.O. BarkhofF. GiannakopoulosP. HallerS. Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals.Radiology2015274249049910.1148/radiol.1414068025291458
    [Google Scholar]
  25. ImabayashiE. SomaT. SoneD. TsukamotoT. KimuraY. SatoN. MurataM. MatsudaH. Validation of the cingulate island sign with optimized ratios for discriminating dementia with Lewy bodies from Alzheimer’s disease using brain perfusion SPECT.Ann. Nucl. Med.201731753654310.1007/s12149‑017‑1181‑428547521
    [Google Scholar]
  26. ImabayashiE. YokoyamaK. TsukamotoT. SoneD. SumidaK. KimuraY. SatoN. MurataM. MatsudaH. The cingulate island sign within early Alzheimer’s disease-specific hypoperfusion volumes of interest is useful for differentiating Alzheimer’s disease from dementia with Lewy bodies.EJNMMI Res.2016616710.1186/s13550‑016‑0224‑527620458
    [Google Scholar]
  27. ProsserA.M.J. Tossici-BoltL. KippsC.M. Occipital lobe and posterior cingulate perfusion in the prediction of dementia with Lewy body pathology in a clinical sample.Nucl. Med. Commun.201738121029103510.1097/MNM.000000000000075028926500
    [Google Scholar]
  28. IshibashiM. KimuraN. SumiK. AsoY. MatsubaraE. Comparison of brain perfusion patterns in dementia with Lewy bodies patients with or without cingulate island sign.Geriatr. Gerontol. Int.201919319720210.1111/ggi.1358630548751
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056337828250526070304
Loading
/content/journals/cmir/10.2174/0115734056337828250526070304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test