Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Spinal image denoising plays a vital role in the accurate diagnosis of disc herniation (DH).

Objective

Traditional denoising algorithms perform less due Limited Directional Selectivity problem and do not adequately capture directional information in pixels. Traditional algorithms' edge representation and texture details are insufficient for the earlier detection of DH. Limited Directional Selectivity leads to inaccurate diagnosis and classification of Disc Herniation (DH) stages. The DH stages are (i) Degeneration (ii) Prolapse (iii) Extrusion and (iv) Sequestration. Moreover, detection of DH size below 2mm using MR image is the major problem.

Methods

To solve the above problem, spinal cord MR images fed to the proposed Parrot optimization tuned Denoising Convolutional Neural Network (Po-DnCNN) algorithm for perspective enhancement of nucleus pulposus region in the spinal cord, vertebrae. The perspective enhancement of Spinal cord image led to the accurate classification of stages and earlier detection of DH by using the proposed Hippopotamus optimization- Fast Hybrid Vision Transformer (Ho–FastViT) algorithm. For this study, spinal cord MR images are obtained from the Grand Challenge website – SPIDER dataset.

Results

The proposed Po-DnCNN method and Ho-FastViT results are analysed quantitatively and qualitatively based on the edge, contrast, classification of the stage, and enhancement of the projected nucleus pulposus region in the spinal cord and vertebrae. The predicted DH results using the proposed method are compared with the manual Pfirrman Grade value of the spinal card method.

Conclusion

Proposed method is better than traditional methods for earlier detection of DH. Po-DnCNN and Ho-FastViat methods give high accuracy of about 98% and 97% compared to traditional methods.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056337613241209072322
2025-01-01
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056337613.html?itemId=/content/journals/cmir/10.2174/0115734056337613241209072322&mimeType=html&fmt=ahah

References

  1. SudirmanS. KafriA.A. NataliaF. MeidiaH. AfrilianaN. RashdanA.W. BashtawiM. JumailyA.M. Lumbar spine MRI dataset.Mendel. Data2019V2k57fr854j2.210.17632/k57fr854j2.2
    [Google Scholar]
  2. OhnmeissD.D. VanharantaH. EkholmJ. Degree of disc disruption and lower extremity pain.Spine199722141600160510.1097/00007632‑199707150‑000159253095
    [Google Scholar]
  3. ZouT. LiuX.Y. WangP.C. ChenH. WuP.G. FengX.M. SunH.H. Incidence of spontaneous resorption of lumbar disc herniation: A meta-analysis.Clin. Spine Surg.202437625626937559207
    [Google Scholar]
  4. FujinokiK. AshizawaK. Directional lifting wavelet transform for image edge analysis.Sign. Process.202421610918810.1016/j.sigpro.2023.109188
    [Google Scholar]
  5. PrabuM. ShankerN.R. KavidaC.A. GaneshE. Geometric distortion and mixed pixel elimination via TDYWT image enhancement for precise spatial measurement to avoid land survey error modeling.Soft Comput.20202419146871470510.1007/s00500‑020‑04814‑x
    [Google Scholar]
  6. DuanX. XiongH. LiuR. DuanX. YuH. Enhanced deep leaning model for detection and grading of lumbar disc herniation from MRI.Med. Biol. Eng. Comput.202462123709371910.1007/s11517‑024‑03161‑538967693
    [Google Scholar]
  7. NeubertA. FrippJ. EngstromC. SchwarzD. WeberM.A. CrozierS. Statistical shape model reconstruction with sparse anomalous deformations: Application to intervertebral disc herniation.Comput. Med. Imaging Graph.201546Pt 1111910.1016/j.compmedimag.2015.05.00226060085
    [Google Scholar]
  8. WilkeH.J. KienleA. MaileS. RascheV. RoscherB.N. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation.Eur. Spine J.20162551363137210.1007/s00586‑016‑4416‑526838335
    [Google Scholar]
  9. HuangX. YeL. WuZ. LiangL. WangQ. YuW. LiangD. JiangX. Biomechanical effects of lateral bending position on performing cervical spinal manipulation for cervical disc herniation: A three-dimensional finite element analysis.Evid. Based Complement. Alternat. Med.201820181279839610.1155/2018/279839629991954
    [Google Scholar]
  10. KangM.S. HwangJ.H. ChoiD.J. ChungH.J. LeeJ.H. KimH.N. ParkH.J. Clinical outcome of biportal endoscopic revisional lumbar discectomy for recurrent lumbar disc herniation.J. Orthop. Surg. Res.202015155710.1186/s13018‑020‑02087‑633228753
    [Google Scholar]
  11. PanJ. WangY. HuangY. Coexistence of intervertebral disc herniation with intradural schwannoma in a lumbar segment: A case report.World J. Surg. Oncol.201614111310.1186/s12957‑016‑0864‑y27091024
    [Google Scholar]
  12. LaoL. DaubsM.D. TakahashiS. LordE.L. CohenJ.R. ZhongG. WangJ.C. Kinetic magnetic resonance imaging analysis of lumbar segmental motion at levels adjacent to disc herniation.Eur. Spine J.201625122222910.1007/s00586‑015‑3977‑z25921654
    [Google Scholar]
  13. MbarkiW. BouchouichaM. FrizziS. TshibasuF. FarhatL.B. SayadiM. Lumbar spine discs classification based on deep convolutional neural networks using axial view MRI.Interdiscip. Neurosurg.20202210083710.1016/j.inat.2020.100837
    [Google Scholar]
  14. KelekisA. FilippiadisD.K. Percutaneous treatment of cervical and lumbar herniated disc.Eur. J. Radiol.201584577177610.1016/j.ejrad.2014.02.02324673977
    [Google Scholar]
  15. YilmazH. ErtürkA.R. KarataşA. Atciİ.B. YurtA. Posterior laminoforaminotomy in the treatment of lateralcervical herniated disc and foraminal stenosis.Turk. J. Med. Sci.201646242442910.3906/sag‑1412‑6127511506
    [Google Scholar]
  16. SolmazB. AydinA.L. GomleksizC. AtakerY. SasaniM. OktenogluT. OzerA.F. Skipping posterior dynamic transpedicular stabilization for distant segment degenerative disease.Adv. Orthop.201220121710.1155/2012/49681723091736
    [Google Scholar]
  17. YU The outcome predicted value of enhanced MRI for prolapsed or sequestrated lumbar disc herniation.Chinese J. Orthopaed202113501360
    [Google Scholar]
  18. AmbrosioL. ScholJ. FernándezR.C. TamagawaS. JoyceK. NomuraA. de RinaldisE. SakaiD. PapaliaR. VadalàG. DenaroV. Getting to the core: Exploring the embryonic development from notochord to nucleus pulposus.J. Dev. Biol.20241231810.3390/jdb1203001839051200
    [Google Scholar]
  19. SumathiG. UmaD.M. Harnessing deep learning (DL) for image inpainting in healthcare system-methods and challenges.In Computer Vision and AI-Integrated IoT Technologies in the Medical EcosystemCRC Press2024152175
    [Google Scholar]
  20. HeS. ZouY. LiB. PengF. LuX. GuoH. TanX. ChenY. An image inpainting-based data augmentation method for improved sclerosed glomerular identification performance with the segmentation model EfficientNetB3-Unet.Sci. Rep.2024141103310.1038/s41598‑024‑51651‑138200109
    [Google Scholar]
  21. KawathekarI.D. AreeckalA.S. Aparna A novel deep learning pipeline for vertebra labeling and segmentation of spinal computed tomography images.IEEE Access202412153301534710.1109/ACCESS.2024.3358874
    [Google Scholar]
  22. KimC. ParkS.M. LeeS. LeeD. A deep learning harmonization of Multi-Vendor MRI for robust intervertebral disc segmentation.IEEE Access202412194821949910.1109/ACCESS.2024.3360272
    [Google Scholar]
  23. YaseenM. AliM. AliS. HussainA. JooM.I. KimH.C. Cervical spine fracture detection and classification using two-stage deep learning methodology.IEEE Access202412721317214210.1109/ACCESS.2024.3398061
    [Google Scholar]
  24. LiuJ. ZhouY. CuiX. JinF. SuoG. XuH. YangJ. Multi-scale hybrid attention convolutional neural network for automatic segmentation of lumbar vertebrae from MRI.IEEE Access202412779997801310.1109/ACCESS.2024.3407833
    [Google Scholar]
  25. SapkotaR. AhmedD. KarkeeM. Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments.Artif. Int. Agric.202413849910.1016/j.aiia.2024.07.001
    [Google Scholar]
  26. ThammasanyaT. PatiamS. RodcharoenE. ChotikarnP. A new approach to classifying polymer type of microplastics based on Faster-RCNN-FPN and spectroscopic imagery under ultraviolet light.Sci. Rep.2024141352910.1038/s41598‑024‑53251‑538346972
    [Google Scholar]
  27. KongX. LiX. ZhuX. GuoZ. ZengL. Detection model based on improved faster-RCNN in apple orchard environment.Int. Syst. Appl.20242120032510.1016/j.iswa.2024.200325
    [Google Scholar]
  28. LiuH. ZhangC. DengY. LiuT. ZhangZ. LiY.F. Orientation cues-aware facial relationship representation for head pose estimation via transformer.IEEE Trans. Image Proc.2023326289630210.1109/TIP.2023.333130937963008
    [Google Scholar]
  29. LiuH. ZhangC. DengY. XieB. LiuT. LiY.F. TransIFC: Invariant cues-aware feature concentration learning for efficient fine-grained bird image classification.IEEE Trans. Multimed.IEEE2023114
    [Google Scholar]
  30. LiuH. ZhouQ. ZhangC. ZhuJ. LiuT. ZhangZ. LiY.F. MMATrans: Muscle movement aware representation learning for facial expression recognition via transformers.IEEE Trans. Industr. Inform.IEEE202411210.1109/TII.2024.3431640
    [Google Scholar]
  31. LiuT. LiuH. YangB. ZhangZ. LDCNet: Limb direction cues-aware network for flexible human pose estimation in industrial behavioral biometrics systems.IEEE Trans. Industr. Inform.202320680688078
    [Google Scholar]
  32. LiuH. LiuT. ChenY. ZhangZ. LiY.F. EHPE: Skeleton cues-based gaussian coordinate encoding for efficient human pose estimation.IEEE Trans. Multimed.20222684648475
    [Google Scholar]
  33. LiuH. LiuT. ZhangZ. SangaiahA.K. YangB. LiY. ARHPE: Asymmetric relation-aware representation learning for head pose estimation in industrial human–computer interaction.IEEE Trans. Industr. Inform.202218107107711710.1109/TII.2022.3143605
    [Google Scholar]
  34. KoreshH.J.D. Implementation and efficient analysis of preprocessing techniques in deep learning for image classification.Curr. Med. Imaging Rev.202420e29082322048210.2174/157340562066623082915015737649293
    [Google Scholar]
  35. BhandariA. GreenhillM. AnthonyM. SharmaS. MushtaqR. MRI imaging appearance of hyperostosis frontalis interna (HFI): A case report of focal benign enhancement.Curr. Med. Imaging Rev.202420e20072321892610.2174/157340562066623072010311337489785
    [Google Scholar]
  36. MaX. LinQ. GuoS. HeY. ZengX. SongY. CaoY. ManZ. LiuC. HuangX. Multimodal data-driven segmentation of bone metastasis lesions in SPECT bone scans using deep learning.Curr. Med. Imaging Rev.202420e1573405632497710.2174/011573405632497724091107384139297464
    [Google Scholar]
  37. SivakumariT. VaniR. Corrigendum to: Deep learning-based automated knee joint localization in radiographic images using faster R-CNN.Curr. Med. Imaging Rev.202420e06062423076810.2174/15734056200124060611221139185659
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056337613241209072322
Loading
/content/journals/cmir/10.2174/0115734056337613241209072322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test