Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Cervical cancer is a prevalent malignancy among women, often asymptomatic in early stages, complicating detection.

Objective

This study aims to investigate innovative techniques for early cervical cancer detection using a novel U-RCNNS model.

Methods

Cervical epithelial cell images stained with hematoxylin and eosin (HE) were analyzed using the U-RCNNS model, which integrates U-Net for segmentation and R-CNN for object detection, incorporating dilated convolution techniques.

Results

The U-RCNNS model significantly improved the accuracy of detecting and segmenting cervical cancer cells, with the enhanced Mask R-CNN showing notable advancements over the baseline model.

Conclusion

The U-RCNNS model presents a promising solution for early cervical cancer detection, offering improved accuracy compared to traditional methods and highlighting its potential for clinical application in early diagnosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056333197241211162651
2025-01-01
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056333197.html?itemId=/content/journals/cmir/10.2174/0115734056333197241211162651&mimeType=html&fmt=ahah

References

  1. GuoP. XueZ. AngaraS. AntaniS.K. Unsupervised deep learning registration of uterine cervix sequence images.Cancers20221410240110.3390/cancers1410240135626005
    [Google Scholar]
  2. AbuKhalilT. AlqarallehB.A.Y. Al-OmariA.H. Optimal deep learning based inception model for cervical cancer diagnosis.Comput. Mater. Continua20227215710.32604/cmc.2022.024367
    [Google Scholar]
  3. AnupamaC.S.S. JoseB.T.J. EidH.F. Intelligent classification model for biomedical pap smear images on IoT environment.Comput. Mater. Continua20227123969398310.32604/cmc.2022.022701
    [Google Scholar]
  4. WalyI.M. SikkandarY.M. AboamerA.M. KadryS. ThinnukoolO. Optimal deep convolution neural network for cervical cancer diagnosis model.Comput. Mater. Continua20227023295330910.32604/cmc.2022.020713
    [Google Scholar]
  5. HeerdenL.E. VisserJ. KoedooderC. RaschC.R.N. PietersB.R. BelA. OC-0174: Deformable image registration for dose accumulation of adaptive EBRT and BT in cervical cancer.Radiother. Oncol.2018127S9110.1016/S0167‑8140(18)30484‑5
    [Google Scholar]
  6. ChapmanC.H. PolanD. VinebergK. JollyS. MaturenK.E. BrockK.K. PrisciandaroJ.I. Deformable image registration–based contour propagation yields clinically acceptable plans for MRI-based cervical cancer brachytherapy planning.Brachytherapy201817236036710.1016/j.brachy.2017.11.01929331573
    [Google Scholar]
  7. van HeerdenL.E. HouwelingA.C. KoedooderK. van KesterenZ. van WieringenN. RaschC.R.N. PietersB.R. BelA. Structure-based deformable image registration: Added value for dose accumulation of external beam radiotherapy and brachytherapy in cervical cancer.Radiother. Oncol.2017123231932410.1016/j.radonc.2017.03.01528372889
    [Google Scholar]
  8. NemotoM.W. IwaiY. TogasakiG. KurokawaM. HaradaR. KobayashiH. UnoT. Preliminary results of a new workflow for MRI/CT-based image-guided brachytherapy in cervical carcinoma.Jpn. J. Radiol.2017351276076510.1007/s11604‑017‑0690‑329039108
    [Google Scholar]
  9. KhaliliA.A. HamarnehG. ZakariaeeR. SpadingerI. AbugharbiehR. Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy.Phys. Med. Biol.201762208116813510.1088/1361‑6560/aa8b3728885196
    [Google Scholar]
  10. MohammadiR. MahdaviS. JaberiR. SiavashpourZ. JananiL. MeigooniA. ReiaziR. Evaluation of deformable image registration algorithm for determination of accumulated dose for brachytherapy of cervical cancer patients.J. Contemp. Brachytherapy201911546947810.5114/jcb.2019.8876231749857
    [Google Scholar]
  11. RigaudB. KloppA. VedamS. VenkatesanA. TakuN. SimonA. HaigronP. de CrevoisierR. BrockK.K. CazoulatG. Deformable image registration for dose mapping between external beam radiotherapy and brachytherapy images of cervical cancer.Phys. Med. Biol.2019641111502310.1088/1361‑6560/ab137830913542
    [Google Scholar]
  12. MiyasakaY. KadoyaN. UmezawaR. TakayamaY. ItoK. YamamotoT. DobashiS. TakedaK. NemotoK. IwaiT. JinguK. Clinical impact of estimating rectal toxicity using deformable image registration for cervical cancer patients.Int. J. Radiat. Oncol. Biol. Phys.20191051E73910.1016/j.ijrobp.2019.06.841
    [Google Scholar]
  13. PengQ. PengY. ZhuJ. CaiM. ZhouL. Accuracy of different image registration methods in image-guided adaptive brachytherapy for cervical cancer.Nan Fang Yi Ke Da Xue Xue Bao201838111344134810.12122/j.issn.1673‑4254.2018.11.1130514683
    [Google Scholar]
  14. JayaB.K. KumarS.S. Image registration based cervical cancer detection and segmentation using ANFIS classifier.Asian Pac. J. Cancer Prev.201819113203320910.31557/APJCP.2018.19.11.320330486611
    [Google Scholar]
  15. WuN. YuA. ZhangL. LiuW. GaoJ. ZhangC. ZhengY. Biocompatible nanoplatform based on mussel adhesive chemistry: Effective assembly, dual mode sensing, and cellular imaging performance.Adv. Mater. Interfaces2019617190073210.1002/admi.201900732
    [Google Scholar]
  16. MehtaR. KaurP. ChoudhuryD. PaulK. LuxamiV. Al3+ induced hydrolysis of rhodamine-based Schiff-base: Applications in cell imaging and ensemble as CN- sensor in 100% aqueous medium.J. Photochem. Photobiol. Chem.201938011185110.1016/j.jphotochem.2019.05.014
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056333197241211162651
Loading
/content/journals/cmir/10.2174/0115734056333197241211162651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test