Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

An ultrasound-based radiomics Machine Learning Model (ML) was utilized to assess non-invasively the conditions of diabetic nephropathy and non-diabetic renal disease in diabetic patients.

A retrospective examination was conducted on 166 diabetic patients who had undergone renal biopsies guided by ultrasound, with the group comprising 114 individuals diagnosed with DN and 52 NDRD. The participants were randomly divided into the training set and the testing set (7:3). Following the extraction of radiomics features from the renal ultrasound images, a univariate analysis was conducted, and the Least Absolute Shrinkage And Selection Operator (LASSO) algorithm was applied to select the most significant features. Three ML algorithms were applied to construct the prediction models. Subsequently, the patients' clinical characteristics were evaluated through both univariate and multivariate logistic regression analyses, which facilitated the development of a clinical model, following a clinical radiomics model was formulated, integrating the radiomics scores (Radscore), along with the independent clinical variables identified through the screening process. The diagnostic performance of the three models constructed was evaluated using the receiver operating characteristic (ROC) curve analysis.

Among the three radiomics ML models, the logistic regression (LR) model achieved the best performance, with the area under the curve (AUC) values of 0.872 (95%CI, 0.800-0.944) and 0.836 (95%CI, 0.716-0.957) for the training set and the testing set, respectively. The decision curve analysis (DCA) verified the clinical practicability of the ML model. Within the same testing set, the AUC of the clinical model was 0.761 (95%CI, 0.606-0.916). The nomogram model based on clinical features plus Radscore showed the best discrimination, with an AUC value of 0.881 (95%CI, 0.779-0.982), which was better than that of the single clinical model and the radiomics model.

The ML model of radiomics based on ultrasound images has potential value in the non-invasive differential diagnosis of patients with diabetic nephropathy. The nomogram constructed based on rad score and clinical features could effectively distinguish DN from NDRD.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056332507250210105723
2025-01-01
2025-10-15
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056332507.html?itemId=/content/journals/cmir/10.2174/0115734056332507250210105723&mimeType=html&fmt=ahah

References

  1. ValenciaW.M. FlorezH. How to prevent the microvascular complications of type 2 diabetes beyond glucose control.BMJ2017356i650510.1136/bmj.i650528096078
    [Google Scholar]
  2. AndersH.J. HuberT.B. IsermannB. SchifferM. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease.Nat. Rev. Nephrol.201814636137710.1038/s41581‑018‑0001‑y29654297
    [Google Scholar]
  3. XueR. GuiD. ZhengL. ZhaiR. WangF. WangN. Mechanistic insight and management of diabetic nephropathy: Recent progress and future perspective.J. Diabetes Res.201720171710.1155/2017/183980928386567
    [Google Scholar]
  4. HungP.H. HsuY.C. ChenT.H. LinC.L. Recent advances in diabetic kidney diseases: From kidney injury to kidney fibrosis.Int. J. Mol. Sci.202122211185710.3390/ijms22211185734769288
    [Google Scholar]
  5. HuangW. ChenY.Y. LiZ.Q. HeF.F. ZhangC. Recent advances in the emerging therapeutic strategies for diabetic kidney diseases.Int. J. Mol. Sci.202223181088210.3390/ijms23181088236142794
    [Google Scholar]
  6. MitchellN.S. SciallaJ.J. YancyW.S.Jr Are low‐carbohydrate diets safe in diabetic and nondiabetic chronic kidney disease?Ann. N. Y. Acad. Sci.202014611253610.1111/nyas.1399730644556
    [Google Scholar]
  7. SmeijerJ.D. KohanD.E. WebbD.J. DhaunN. HeerspinkH.J.L. Endothelin receptor antagonists for the treatment of diabetic and nondiabetic chronic kidney disease.Curr. Opin. Nephrol. Hypertens.202130445646510.1097/MNH.000000000000071633990507
    [Google Scholar]
  8. TangS.C.W. ChanK.W. IpD.K.M. YapD.Y.H. MaM.K.M. MokM.M.Y. ChanG.C.W. TamS. LaiK.N. Direct renin inhibition in non-diabetic chronic kidney disease (DRINK): A prospective randomized trial.Nephrol. Dial. Transplant.20213691648165610.1093/ndt/gfaa08532617578
    [Google Scholar]
  9. KlessensC.Q.F. WoutmanT.D. VeraarK.A.M. ZandbergenM. ValkE.J.J. RotmansJ.I. WolterbeekR. BruijnJ.A. BajemaI.M. An autopsy study suggests that diabetic nephropathy is underdiagnosed.Kidney Int.201690114915610.1016/j.kint.2016.01.02327165826
    [Google Scholar]
  10. ZhangK. LiuX. XuJ. YuanJ. CaiW. ChenT. WangK. GaoY. NieS. XuX. QinX. SuY. XuW. OlveraA. XueK. LiZ. ZhangM. ZengX. ZhangC.L. LiO. ZhangE.E. ZhuJ. XuY. KermanyD. ZhouK. PanY. LiS. LaiI.F. ChiY. WangC. PeiM. ZangG. ZhangQ. LauJ. LamD. ZouX. WumaierA. WangJ. ShenY. HouF.F. ZhangP. XuT. ZhouY. WangG. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images.Nat. Biomed. Eng.20215653354510.1038/s41551‑021‑00745‑634131321
    [Google Scholar]
  11. OhS.W. KimS. NaK.Y. ChaeD.W. KimS. JinD.C. ChinH.J. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy.Diabetes Res. Clin. Pract.201297341842410.1016/j.diabres.2012.03.01622521535
    [Google Scholar]
  12. BiH. ChenN. LingG. YuanS. HuangG. LiuR. Nondiabetic renal disease in type 2 diabetic patients: A review of our experience in 220 cases.Ren. Fail.2011331263010.3109/0886022X.2010.53629221219202
    [Google Scholar]
  13. MouS. WangQ. LiuJ. CheX. ZhangM. CaoL. ZhouW. NiZ. Prevalence of non-diabetic renal disease in patients with type 2 diabetes.Diabetes Res. Clin. Pract.201087335435910.1016/j.diabres.2009.11.01220005594
    [Google Scholar]
  14. SharmaS.G. BombackA.S. RadhakrishnanJ. HerlitzL.C. StokesM.B. MarkowitzG.S. D’AgatiV.D. The modern spectrum of renal biopsy findings in patients with diabetes.Clin. J. Am. Soc. Nephrol.20138101718172410.2215/CJN.0251021323886566
    [Google Scholar]
  15. ElSayedN.A. AleppoG. BannuruR.R. BruemmerD. CollinsB.S. EkhlaspourL. HilliardM.E. JohnsonE.L. KhuntiK. LingvayI. MatfinG. McCoyR.G. PerryM.L. PillaS.J. PolskyS. PrahaladP. PratleyR.E. SegalA.R. SeleyJ.J. StantonR.C. GabbayR.A. American Diabetes Association Professional Practice Committee 11. Chronic kidney disease and risk management: Standards of care in diabetes—2024.Diabetes Care202447Suppl. 1S219S23010.2337/dc24‑S01138078574
    [Google Scholar]
  16. TominoY. GohdaT. The prevalence and management of diabetic nephropathy in Asia.Kidney Dis.201511526010.1159/00038175727536665
    [Google Scholar]
  17. SunQ. BauesM. KlinkhammerB.M. EhlingJ. DjudjajS. DrudeN.I. DanielC. AmannK. KramannR. KimH. Saez-RodriguezJ. WeiskirchenR. OnthankD.C. BotnarR.M. KiesslingF. FloegeJ. LammersT. BoorP. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis.Sci. Transl. Med.201911486eaat486510.1126/scitranslmed.aat486530944168
    [Google Scholar]
  18. HsiehJ.T. ChangF.P. YangA.H. TarngD.C. YangC.Y. Timing of kidney biopsy in type 2 diabetic patients: A stepwise approach.BMC Nephrol.202021113110.1186/s12882‑020‑01794‑w32293326
    [Google Scholar]
  19. WangJ. HanQ. ZhaoL. ZhangJ. WangY. WuY. WangT. ZhangR. GrungP. XuH. LiuF. Identification of clinical predictors of diabetic nephropathy and non-diabetic renal disease in Chinese patients with type 2 diabetes, with reference to disease course and outcome.Acta Diabetol.201956893994610.1007/s00592‑019‑01324‑730927104
    [Google Scholar]
  20. LiuM. YuH. ZhangD. HanQ. YangX. LiuX. WangJ. ZhangK. YangF. CaiG. ChenX. ZhuH. Alteration of glycosylation in serum proteins: A new potential indicator to distinguish non-diabetic renal diseases from diabetic nephropathy.RSC Advances2018868388723888210.1039/C8RA06832A35558281
    [Google Scholar]
  21. MaQ. ShenC. GaoY. DuanY. LiW. LuG. QinX. ZhangC. WangJ. Radiomics analysis of breast lesions in combination with coronal plane of ABVS and strain elastography.Breast Cancer20231538139010.2147/BCTT.S41035637260586
    [Google Scholar]
  22. WangT. YangH. HaoD. NieP. LiuY. HuangC. HuangY. WangH. NiuH. A CT-based radiomics nomogram for distinguishing between malignant and benign Bosniak IIF masses: A two-centre study.Clin. Radiol.202378859060010.1016/j.crad.2023.04.01137258333
    [Google Scholar]
  23. WangY. LiuZ. XuH. YangD. JiangJ. AsayoH. YangZ. MRI-based radiomics model and nomogram for predicting the outcome of locoregional treatment in patients with hepatocellular carcinoma.BMC Med. Imaging20232316710.1186/s12880‑023‑01030‑537254089
    [Google Scholar]
  24. QinX. XiaL. HuX. XiaoW. HuamingX. XishengX. ZhangC. A novel clinical−radiomic nomogram for the crescent status in IgA nephropathy.Front. Endocrinol.202314109345210.3389/fendo.2023.109345236742388
    [Google Scholar]
  25. QinX. XiaL. ZhuC. HuX. XiaoW. XieX. ZhangC. Noninvasive evaluation of lupus nephritis activity using a radiomics machine learning model based on ultrasound.J. Inflamm. Res.20231643344110.2147/JIR.S39839936761904
    [Google Scholar]
  26. KistlerB.M. MooreL.W. BennerD. BirueteA. BoazM. BrunoriG. ChenJ. DrechslerC. Guebre-EgziabherF. HensleyM.K. IsekiK. KovesdyC.P. KuhlmannM.K. SaxenaA. WeeP. Brown-TortoriciA. GaribottoG. PriceS.R. Yee-Moon WangA. Kalantar-ZadehK. The international society of renal nutrition and metabolism commentary on the national kidney foundation and academy of nutrition and dietetics KDOQI clinical practice guideline for nutrition in chronic kidney disease.J. Ren. Nutr.2021312116120.e110.1053/j.jrn.2020.05.00232737016
    [Google Scholar]
  27. WarkentinM.T. Al-SawaiheyH. LamS. LiuG. DiergaardeB. YuanJ.M. WilsonD.O. Atkar-KhattraS. GrantB. BrhaneY. Khodayari-MoezE. MurisonK.R. TammemagiM.C. CampbellK.R. HungR.J. Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches.Thorax2024794thorax-2023-22022610.1136/thorax‑2023‑22022638195644
    [Google Scholar]
  28. HanY. MaY. WuZ. ZhangF. ZhengD. LiuX. TaoL. LiangZ. YangZ. LiX. HuangJ. GuoX. Histologic subtype classification of non-small cell lung cancer using PET/CT images.Eur. J. Nucl. Med. Mol. Imaging202148235036010.1007/s00259‑020‑04771‑532776232
    [Google Scholar]
  29. PetrucciI. ClementiA. SessaC. TorrisiI. MeolaM. Ultrasound and color Doppler applications in chronic kidney disease.J. Nephrol.201831686387910.1007/s40620‑018‑0531‑130191413
    [Google Scholar]
  30. de LeonA.D. KapurP. PedrosaI. Radiomics in kidney cancer.Magn. Reson. Imaging Clin. N. Am.201927111310.1016/j.mric.2018.08.00530466904
    [Google Scholar]
  31. WangY. ZhaoP. LiN. DongZ. LinL. LiuJ. LiangS. WangQ. TangJ. LuoY. A study on correlation between contrast-enhanced ultrasound parameters and pathological features of diabetic nephropathy.Ultrasound Med. Biol.202248222823610.1016/j.ultrasmedbio.2021.08.01434789402
    [Google Scholar]
  32. BandaraM.S. GurunayakaB. LakrajG. PallewatteA. SiribaddanaS. WansapuraJ. Ultrasound based radiomics features of chronic kidney disease.Acad. Radiol.202229222923510.1016/j.acra.2021.01.00633589307
    [Google Scholar]
  33. JiangW. WangJ. ShenX. LuW. WangY. LiW. GaoZ. XuJ. LiX. LiuR. ZhengM. ChangB. LiJ. YangJ. ChangB. Establishment and validation of a risk prediction model for early diabetic kidney disease based on a systematic review and meta-analysis of 20 cohorts.Diabetes Care202043492593310.2337/dc19‑189732198286
    [Google Scholar]
  34. AnL. YuQ. TangH. LiX. WangD. TangQ. XingH. HeY. ZhaoX. ZhaoS. LeeY. LuJ. The prevalence, progress and risk factor control of chronic kidney disease in chinese adults with type 2 diabetes mellitus in primary care.Front. Endocrinol.20221385926610.3389/fendo.2022.85926635757423
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056332507250210105723
Loading
/content/journals/cmir/10.2174/0115734056332507250210105723
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Chronic disease; Diabetic nephropathy; Machine learning; Ultrasonography
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test