Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Early diagnosis of prostate cancer can improve the survival rate of patients on the premise of high-quality images. The prerequisite for early diagnosis is high-quality images. ZOOMit is a method for high-resolution, zoomed FOV imaging, allowing diffusion-weighted images with high contrast and resolution in short acquisition times. RESOLVE DWI is an advanced MRI technique developed to obtain high-resolution diffusion-weighted images with reduced susceptibility-related artifacts.

Objective

This study aimed to compare the image quality of conventional single-shot Echo-planar Imaging (ss-EPI) Diffusion-weighted Imaging (DWI), zoomed FOV imaging (ZOOMit) DWI, and readout segmentation of long variable echo-trains (RESOLVE) DWI sequences for prostate imaging, and optimize the strategy to obtain high-quality Magnetic Resonance Imaging (MRI) in order to discriminate malignant and benign prostate diseases.

Methods

Fifty-one patients were enrolled, including 31 with prostate cancer, 11 with prostate benign disease, and 9 with bladder cancer. Patients underwent MRI scans using T2-weighted (T2W), ss-EPI DWI, ZOOMit DWI, and RESOLVE DWI (b = 0, 50, 1400 s/mm2) sequences using a 3.0T MRI scanner. Subjective scores of image quality were evaluated by two independent radiologists. Differences in the subjective scores and objective parameters among the three sequences were compared. The agreement and consistency between the findings of the two raters were evaluated with Kappa or Intra-class Correlation Coefficient (ICC). Receiver Operating Characteristic (ROC) curves were used to distinguish malignant and benign prostate disease.

Results

The agreement of subjective scores of 51 patients was high or moderate between the two radiologists (kappa: 0.529–0.880). ZOOMit displayed the highest clarity and the lowest distortion and artifacts compared to ss-EPI and RESOLVE. The two radiologic technicians obtained moderate or high consistency of objective measurement (ICC: 0.527–0.924). In the ROC analysis, ADCmean and Prostate Imaging Reporting and Data System (PI-RADS) scores for three sequences were comparable in differentiating prostate cancer from benign prostate disease (all >0.05), in which ZOOMit indicated the highest Area Under the Curve (AUC) (0.930 and 0.790, respectively).

Conclusion

Compared to the other two sequences, ZOOMit can be deemed preferable to improve prostate MRI diffusion imaging as it has exhibited the highest AUC in identifying prostate cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056329976241209112720
2025-01-02
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056329976.html?itemId=/content/journals/cmir/10.2174/0115734056329976241209112720&mimeType=html&fmt=ahah

References

  1. RawlaP. Epidemiology of Prostate Cancer.World J. Oncol.2019102638910.14740/wjon119131068988
    [Google Scholar]
  2. PatelP. WangS. SiddiquiM.M. The Use of Multiparametric Magnetic Resonance Imaging (mpMRI) in the Detection, Evaluation, and Surveillance of Clinically Significant Prostate Cancer (csPCa).Curr. Urol. Rep.201920106010.1007/s11934‑019‑0926‑031478113
    [Google Scholar]
  3. DuvnjakP. SchulmanA.A. HoltzJ.N. HuangJ. PolascikT.J. GuptaR.T. Multiparametric prostate MR imaging: Impact on clinical staging and decision making.Urol. Clin. North Am.201845345546610.1016/j.ucl.2018.03.01030031465
    [Google Scholar]
  4. WongO.L. YuanJ. PoonD.M.C. ChiuS.T. YangB. ChiuG. YuS.K. CheungK.Y. Prostate diffusion-weighted imaging (DWI) in MR-guided radiotherapy: Reproducibility assessment on 1.5 T MR-Linac and 1.5 T MR-simulator.Magn. Reson. Imaging2024111475610.1016/j.mri.2024.03.02038513789
    [Google Scholar]
  5. MaurerM.H. HeverhagenJ.T. Diffusion weighted imaging of the prostate—principles, application, and advances.Transl. Androl. Urol.20176349049810.21037/tau.2017.05.0628725591
    [Google Scholar]
  6. KuruT.H. RoethkeM.C. StieltjesB. Maier-HeinK. SchlemmerH.P. HadaschikB.A. FenchelM. Intravoxel incoherent motion (IVIM) diffusion imaging in prostate cancer - what does it add?J. Comput. Assist. Tomogr.201438455856410.1097/RCT.000000000000008824733005
    [Google Scholar]
  7. ShinmotoH. TamuraC. SogaS. ShiomiE. YoshiharaN. KajiT. MulkernR.V. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer.AJR Am. J. Roentgenol.20121994W496W50010.2214/AJR.11.834722997399
    [Google Scholar]
  8. DöpfertJ. LemkeA. WeidnerA. SchadL.R. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging.Magn. Reson. Imaging20112981053105810.1016/j.mri.2011.06.00121855241
    [Google Scholar]
  9. ThierfelderK.M. ScherrM.K. NotohamiprodjoM. WeißJ. DietrichO. Mueller-LisseU.G. PfeufferJ. NikolaouK. TheisenD. Diffusion-weighted MRI of the prostate: advantages of Zoomed EPI with parallel-transmit-accelerated 2D-selective excitation imaging.Eur. Radiol.201424123233324110.1007/s00330‑014‑3347‑y25154727
    [Google Scholar]
  10. XuX.Q. LiuJ. HuH. SuG.Y. ZhangY.D. ShiH.B. WuF.Y. Improve the image quality of orbital 3 T diffusion-weighted magnetic resonance imaging with readout-segmented echo-planar imaging.Clin. Imaging201640479379610.1016/j.clinimag.2016.03.00227317226
    [Google Scholar]
  11. RosenkrantzA.B. ChandaranaH. PfeufferJ. TrioloM.J. ShaikhM.B. MossaD.J. GeppertC. Zoomed echo-planar imaging using parallel transmission: impact on image quality of diffusion-weighted imaging of the prostate at 3T.Abdom. Imaging201540112012610.1007/s00261‑014‑0181‑224962196
    [Google Scholar]
  12. ZhaoM. LiuZ. ShaY. WangS. YeX. PanY. WangS. Readout-segmented echo-planar imaging in the evaluation of sinonasal lesions: A comprehensive comparison of image quality in single-shot echo-planar imaging.Magn. Reson. Imaging201634216617210.1016/j.mri.2015.10.01026541548
    [Google Scholar]
  13. AlginO. AydınH. OzmenE. OcakogluG. BercinS. PorterD.A. KutluhanA. Detection of cholesteatoma: High-resolution DWI using RS-EPI and parallel imaging at 3 tesla.J. Neuroradiol.201744638839410.1016/j.neurad.2017.05.00628673676
    [Google Scholar]
  14. HellmsS. GutberletM. PeperhoveM.J. PertschyS. HenkenberensC. PetersI. WackerF. DerlinK. Applicability of readout-segmented echoplanar diffusion weighted imaging for prostate MRI.Medicine (Baltimore)20199829e1644710.1097/MD.000000000001644731335699
    [Google Scholar]
  15. BrendleC. MartirosianP. SchwenzerN.F. KaufmannS. KruckS. KramerU. NotohamiprodjoM. NikolaouK. SchramlC. Diffusion-weighted imaging in the assessment of prostate cancer: Comparison of zoomed imaging and conventional technique.Eur. J. Radiol.201685589390010.1016/j.ejrad.2016.02.02027130048
    [Google Scholar]
  16. ThierfelderK.M. SommerW.H. DietrichO. MeinelF.G. TheisenD. PaprottkaP.M. StroblF.F. PfeufferJ. ReiserM.F. NikolaouK. Parallel-transmit-accelerated spatially-selective excitation mri for reduced-fov diffusion-weighted-imaging of the pancreas.Eur. J. Radiol.201483101709171410.1016/j.ejrad.2014.06.00625017152
    [Google Scholar]
  17. WeinrebJ.C. BarentszJ.O. ChoykeP.L. CornudF. HaiderM.A. MacuraK.J. MargolisD. SchnallM.D. ShternF. TempanyC.M. ThoenyH.C. VermaS. PI-RADS prostate imaging – reporting and data system: 2015, Version 2.Eur. Urol.2016691164010.1016/j.eururo.2015.08.05226427566
    [Google Scholar]
  18. TewesS. MokovN. HartungD. SchickV. PetersI. SchedlP. PertschyS. WackerF. VoshageG. HueperK. Standardized reporting of prostate MRI: Comparison of the prostate imaging reporting and data system (PI-RADS) Version 1 and Version 2.PLoS One2016119e016287910.1371/journal.pone.016287927657729
    [Google Scholar]
  19. HuL. ZhouD. FuC. BenkertT. JiangC. LiR. WeiL. ZhaoJ. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: a radiomic features study.Eur. Radiol.20213131760176910.1007/s00330‑020‑07227‑432935192
    [Google Scholar]
  20. LineyG.P. HollowayL. Al HarthiT.M. SidhomM. MosesD. JuresicE. RaiR. MantonD.J. Quantitative evaluation of diffusion-weighted imaging techniques for the purposes of radiotherapy planning in the prostate.Br. J. Radiol.20158810492015003410.1259/bjr.2015003425739757
    [Google Scholar]
  21. Yıldırımİ.O. SağlıkS. ÇelikH. Conventional and ZOOMit DWI for Evaluation of Testis in Patients With Ipsilateral Varicocele.AJR Am. J. Roentgenol.201720851045105010.2214/AJR.16.1729228225646
    [Google Scholar]
  22. SimK.C. ParkB.J. HanN.Y. SungD.J. KimM.J. HanY.E. Efficacy of ZOOMit coronal diffusion-weighted imaging and MR texture analysis for differentiating between benign and malignant distal bile duct strictures.Abdom. Radiol. (N.Y.)20204582418242910.1007/s00261‑020‑02625‑032562051
    [Google Scholar]
  23. LiL. WangL. DengM. LiuH. CaiJ. SahV.K. LiuJ. Feasibility study of 3-T DWI of the prostate: readout-segmented versus single-shot echo-planar imaging.AJR Am. J. Roentgenol.20152051707610.2214/AJR.14.1348926102382
    [Google Scholar]
  24. SeegerA. KloseU. BischofF. StrobelJ. ErnemannU. HauserT.K. Zoomed EPI DWI of acute spinal ischemia using a parallel transmission system.Clin. Neuroradiol.201626217718210.1007/s00062‑014‑0342‑225168248
    [Google Scholar]
  25. VidiriA. MinosseS. PiluduF. CurioneD. PichiB. SprianoG. MarziS. Feasibility study of reduced field of view diffusion-weighted magnetic resonance imaging in head and neck tumors.Acta Radiol.201758329230010.1177/028418511665201427287402
    [Google Scholar]
  26. RosenkrantzA.B. GeppertC. KiritsyM. FeiweierT. MossaD.J. ChandaranaH. Diffusion-weighted imaging of the liver: Comparison of image quality between monopolar and bipolar acquisition schemes at 3T.Abdom. Imaging201540228929810.1007/s00261‑014‑0215‑925117562
    [Google Scholar]
  27. TamuraC. ShinmotoH. SogaS. OkamuraT. SatoH. OkuakiT. PangY. KosudaS. KajiT. Diffusion kurtosis imaging study of prostate cancer: Preliminary findings.J. Magn. Reson. Imaging201440372372910.1002/jmri.2437924924835
    [Google Scholar]
  28. RoethkeM.C. KuderT.A. KuruT.H. FenchelM. HadaschikB.A. LaunF.B. SchlemmerH.P. StieltjesB. Evaluation of diffusion kurtosis imaging versus standard diffusion imaging for detection and grading of peripheral zone prostate cancer.Invest. Radiol.201550848348910.1097/RLI.000000000000015525867657
    [Google Scholar]
  29. LiC. ChenM. LiS. ZhaoX. ZhangC. LiuM. ZhouC. Diffusion tensor imaging of prostate at 3.0 Tesla.Acta Radiol.201152781381710.1258/ar.2011.10048721586608
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056329976241209112720
Loading
/content/journals/cmir/10.2174/0115734056329976241209112720
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test