Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Multiple spectral images can be extrapolated from Spectral Detector CT (SDCT), ED, and OED images. ED and OED images are highly sensitive to moisture-rich tissues. Moreover, they have the potential to detect pulmonary artery thrombi in non-enhanced chest CT images.

Objective

The objective of this study was to assess the sensitivity, specificity, and accuracy of ED and OED images obtained using SDCT for the detection of pulmonary embolism on non-enhanced images.

Aims

This study aimed to evaluate the utility of unenhanced spectral imaging, Electron Density (ED), and Overlay Electron Density (OED) images for assessing pulmonary embolisms in patients with suspected or confirmed Acute Pulmonary Embolism (APE).

Methods

Seventy-nine patients who underwent unenhanced and Computed Tomography Pulmonary Angiography (CTPA) using dual-layer spectral detector CT to evaluate APE between November, 2021 and April, 2022 were enrolled in this retrospective study. Based on unenhanced spectral and CTPA images, two radiologists identified areas of high density in the main, lobar, and segmental pulmonary arteries on ED and OED images and detected Pulmonary Embolism (PE) on enhanced images using a consultative approach. CTPA results were considered the gold standard. The diagnostic performance of ED and OED in detecting PE was analyzed.

Results

PE was detected in 40 patients (40/79), and 17, 69, and 20 PEs were detected in the main, lobar, and segmental arteries, respectively. The PE detection sensitivity on ED images was 69.7–94.7%, and the specificity was 58.5–98.2% for the individual, main, lobe, and segmental pulmonary arteries. The sensitivity and specificity for OED images were 94.1–95.2% and 80.0–98.1%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 53.6–87.7% and 69.7–95.9% for ED images and 48.5–88.9% and 94.1–98.9% for OED images, respectively. The accuracy was 76.0–98.9% and 87.3–96.2% when using ED and OED images, respectively. The research identified that whether it was main, lobar, or segmental pulmonary arteries with blood clots, EDW values ranged from 108.1–108.8%EDW, which were 3.9–4.2%EDW higher than those of arteries without emboli. Pulmonary arteries with emboli standardised ED values were 103.6-104.3%EDW.

Conclusion

ED and OED images using spectral CT without contrast media demonstrated high diagnostic performance and could improve the visualization of PE.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056316803241021102932
2025-01-01
2025-10-15
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056316803.html?itemId=/content/journals/cmir/10.2174/0115734056316803241021102932&mimeType=html&fmt=ahah

References

  1. WendelboeA.M. RaskobG.E. Global burden of thrombosis: Epidemiologic aspects.Circ. Res.201611891340134710.1161/CIRCRESAHA.115.30684127126645
    [Google Scholar]
  2. RaskobG.E. AngchaisuksiriP. BlancoA.N. BullerH. GallusA. HuntB.J. HylekE.M. KakkarA. KonstantinidesS.V. McCumberM. OzakiY. WendelboeA. WeitzJ.I. Thrombosis: A major contributor to global disease burden.Arterioscler. Thromb. Vasc. Biol.201434112363237110.1161/ATVBAHA.114.30448825304324
    [Google Scholar]
  3. HarveyJ.J. HuangS. UberoiR. Catheter-directed therapies for the treatment of high risk (massive) and intermediate risk (submassive) acute pulmonary embolism.Cochrane Database Syst. Rev.202288CD01308335938605
    [Google Scholar]
  4. BarcoS. ValerioL. GalloA. TurattiG. MahmoudpourS.H. AgenoW. CastellucciL.A. Cesarman-MausG. DdunguH. De PaulaE.V. DumantepeM. GoldhaberS.Z. Guillermo EspositoM.C. KlokF.A. KucherN. McLintockC. Ní ÁinleF. SimioniP. SpirkD. SpyropoulosA.C. UranoT. ZhaiZ. HuntB.J. KonstantinidesS.V. Global reporting of pulmonary embolism–related deaths in the World Health Organization mortality database: Vital registration data from 123 countries.Res. Pract. Thromb. Haemost.202155e1252010.1002/rth2.1252034263098
    [Google Scholar]
  5. ZantonelliG. CozziD. BindiA. CavigliE. MoroniC. LuvaràS. GrazziniG. DantiG. GranataV. MieleV. Acute pulmonary embolism: Prognostic role of Computed Tomography Pulmonary Angiography (CTPA).Tomography20228152953910.3390/tomography801004235202207
    [Google Scholar]
  6. KlineJ.A. GarrettJ.S. SarmientoE.J. StrachanC.C. CourtneyD.M. Over-testing for suspected pulmonary embolism in american emergency departments.Circ. Cardiovasc. Qual. Outcomes2020131e00575310.1161/CIRCOUTCOMES.119.00575331957477
    [Google Scholar]
  7. RajiH. Javad MoosaviS.A. DastoorpoorM. MohamadipourZ. Mousavi GhanavatiP. Overuse and underuse of pulmonary CT angiography in patients with suspected pulmonary embolism.Med. J. Islam. Repub. Iran2018321131710.14196/mjiri.32.329977871
    [Google Scholar]
  8. MirabileA. LucarelliN.M. SollazzoE.P. Stabile IanoraA.A. SardaroA. MirabileG. LorussoF. RacanelliV. MaggialettiN. ScardapaneA. CT pulmonary angiography appropriateness in a single emergency department: Does the use of revised Geneva score matter?Radiol. Med. (Torino)2021126121544155210.1007/s11547‑021‑01416‑x34518985
    [Google Scholar]
  9. EhsanbakhshA. HatamiF. ValizadehN. KhorashadizadehN. NorouziradF. Evaluating the performance of unenhanced computed tomography in the diagnosis of pulmonary embolism.J Tehran Heart Cent202116415616135935550
    [Google Scholar]
  10. FrancoP.N. SpasianoC.M. MainoC. De PontiE. RagusiM. GiandolaT. TerraniS. PeroniM. CorsoR. IppolitoD. Principles and applications of dual-layer spectral CT in gastrointestinal imaging.Diagnostics (Basel)20231310174010.3390/diagnostics1310174037238224
    [Google Scholar]
  11. RassouliN. EtesamiM. DhanantwariA. RajiahP. Detector-based spectral CT with a novel dual-layer technology: Principles and applications.Insights Imaging20178658959810.1007/s13244‑017‑0571‑428986761
    [Google Scholar]
  12. NagayamaY. InoueT. OdaS. TanoueS. NakauraT. MorinagaJ. IkedaO. HiraiT. Unenhanced dual-layer spectral-detector CT for characterizing indeterminate adrenal lesions.Radiology2021301236937810.1148/radiol.202120243534427466
    [Google Scholar]
  13. YuY. FuY. ChenX. ZhangY. ZhangF. LiX. ZhaoX. ChengJ. WuH. Dual-layer spectral detector CT: Predicting the invasiveness of pure ground-glass adenocarcinoma.Clin. Radiol.2022776e458e46510.1016/j.crad.2022.02.00635277263
    [Google Scholar]
  14. LaiL.Y. JiangY. ShuJ. The application of dual-layer spectral detector CT in abdominal vascular imaging.Curr. Med. Imaging20231914e16022321372410.2174/157340561966623021612265036797603
    [Google Scholar]
  15. DaoudB. CazejustJ. TavolaroS. DurandS. PommierR. HamrouniA. BornetG. Could spectral CT have a potential benefit in coronavirus disease (COVID-19)?AJR Am. J. Roentgenol.2021216234935410.2214/AJR.20.2354632822225
    [Google Scholar]
  16. SedaghatS. LangguthP. LarsenN. CampbellG. BothM. JansenO. Diagnostic accuracy of dual-layer spectral CT using electron density images to detect post-traumatic prevertebral hematoma of the cervical spine.Röfo Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr.2021193121445145010.1055/a‑1529‑701034352915
    [Google Scholar]
  17. BaeK. JeonK.N. Diagnosis of pulmonary embolism in unenhanced dual energy CT using an electron density image.Diagnostics (Basel)20211110184110.3390/diagnostics1110184134679538
    [Google Scholar]
  18. ChamM.D. YankelevitzD.F. ShahamD. ShahA.A. ShermanL. LewisA. RademakerJ. PearsonG. ChoiJ. WolffW. PrabhuP.M. GalanskiM. ClarkR.A. SostmanH.D. HenschkeC.I. Deep venous thrombosis: Detection by using indirect CT venography.Radiology2000216374475110.1148/radiology.216.3.r00se4474410966705
    [Google Scholar]
  19. FehrenbachU. FeldhausF. KahnJ. BöningG. MaurerM.H. RenzD. FrostN. StreitparthF. Tumour response in non‐small‐cell lung cancer patients treated with chemoradiotherapy – Can spectral CT predict recurrence?J. Med. Imaging Radiat. Oncol.201963564164910.1111/1754‑9485.1292631282130
    [Google Scholar]
  20. Ghasemi ShayanR. OladghaffariM. SajjadianF. Fazel GhaziyaniM. Image quality and dose comparison of single-energy CT (SECT) and dual-energy CT (DECT).Radiol. Res. Pract.2020202011110.1155/2020/140395732373363
    [Google Scholar]
  21. BogotN.R. FingerleA. ShahamD. NissenbaumI. SosnaJ. Image quality of low-energy pulmonary CT angiography: Comparison with standard CT.AJR Am. J. Roentgenol.20111972W273W27810.2214/AJR.10.531821785053
    [Google Scholar]
  22. SunS. SemionovA. XieX. KosiukJ. MesurolleB. Detection of central pulmonary embolism on non-contrast computed tomography: A case control study.Int. J. Cardiovasc. Imaging201430363964610.1007/s10554‑013‑0356‑x24390296
    [Google Scholar]
  23. TatcoV.R. PiedadH.H. The validity of hyperdense lumen sign in non-contrast chest CT scans in the detection of pulmonary thromboembolism.Int. J. Cardiovasc. Imaging201127343344010.1007/s10554‑010‑9673‑520658266
    [Google Scholar]
  24. EhnS. SellererT. MuenzelD. FingerleA.A. KoppF. DudaM. MeiK. RengerB. HerzenJ. DangelmaierJ. SchwaigerB.J. SauterA. RiedererI. RenzM. BrarenR. RummenyE.J. PfeifferF. NoëlP.B. Assessment of quantification accuracy and image quality of a full‐body dual‐layer spectral CT system.J. Appl. Clin. Med. Phys.201819120421710.1002/acm2.1224329266724
    [Google Scholar]
  25. NeuhausV. LennartzS. AbdullayevN. Große HokampN. ShapiraN. KafriG. HolzJ.A. KrugB. HellmichM. MaintzD. BorggrefeJ. Bone marrow edema in traumatic vertebral compression fractures: Diagnostic accuracy of dual-layer detector CT using calcium suppressed images.Eur. J. Radiol.201810521622010.1016/j.ejrad.2018.06.00930017283
    [Google Scholar]
  26. SoA. NicolaouS. Spectral computed tomography: Fundamental principles and recent developments.Korean J. Radiol.2021221869610.3348/kjr.2020.014432932564
    [Google Scholar]
  27. MeiK. EhnS. OechsnerM. KoppF.K. PfeifferD. FingerleA.A. PfeifferF. CombsS.E. WilkensJ.J. RummenyE.J. NoëlP.B. Dual-layer spectral computed tomography: Measuring relative electron density.Eur. Radiol. Exp.2018212010.1186/s41747‑018‑0051‑830175319
    [Google Scholar]
  28. NellesC. LennartzS. Spinal hematoma visualized with dual-energy CT-derived electron density overlay maps.Radiology20233074e22268010.1148/radiol.22268037039691
    [Google Scholar]
  29. KonstantinidesS.V. MeyerG. BecattiniC. BuenoH. GeersingG.J. HarjolaV.P. HuismanM.V. HumbertM. JenningsC.S. JiménezD. KucherN. LangI.M. LankeitM. LorussoR. MazzolaiL. MeneveauN. ÁinleF.N. PrandoniP. PruszczykP. RighiniM. TorbickiA. Van BelleE. ZamoranoJ.L. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS).Eur. Respir. J.2019543190164710.1183/13993003.01647‑201931473594
    [Google Scholar]
  30. YanL. LiX. LiuZ. ZhaoZ. LuoQ. ZhaoQ. JinQ. YuX. ZhangY. Research progress on the pathogenesis of CTEPH.Heart Fail. Rev.20192461031104010.1007/s10741‑019‑09802‑431087212
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056316803241021102932
Loading
/content/journals/cmir/10.2174/0115734056316803241021102932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test