Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Intrauterine growth restriction (IUGR) is associated with long-term metabolic disturbances, including obesity. Changes in hepatic lipid metabolism and adipose tissue function, mediated by lipin-1 and lipin-2, may contribute to these outcomes.

Aim

This study aimed to investigate the correlation between lipin-1 in visceral adipose tissues (VATs) and lipin-2 in the liver. It also examined hepatic T1 values using T1 mapping in IUGR rats.

Objective

The objective of this study was to explore the metabolic mechanisms linking IUGR and adult obesity by analyzing molecular and imaging markers.

Methods

Pregnant rats were fed either a low-protein diet (10%) to induce IUGR or a normal-protein diet (21%) as a control. Male offspring underwent conventional magnetic resonance imaging and native T1 mapping using a 3.0 T whole-body MR scanner at days 21, 56, and 84 post-birth. Liver tissues and VATs were collected for analysis. Lipin-1 and lipin-2 expression levels were measured using Western blot and real-time quantitative PCR.

Results

The IUGR group exhibited significantly higher mRNA and protein expression levels of lipin-1 and lipin-2 compared to the control group at days 21, 56, and 84 after birth. Additionally, the IUGR group demonstrated significantly higher hepatic T1 values than the control group at the corresponding time points. Positive correlations were observed between the protein and mRNA expression levels of lipin-1 and hepatic T1 values. Similarly, the protein and mRNA expression levels of lipin-2 were positively correlated with hepatic T1 values. All results were statistically significant (P<0.05).

Conclusion

The upregulation of lipin-1 and lipin-2 expressions was found to be linked to elevated hepatic T1 values, potentially contributing to adult obesity in IUGR rats.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056296733250514081236
2025-05-26
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056296733.html?itemId=/content/journals/cmir/10.2174/0115734056296733250514081236&mimeType=html&fmt=ahah

References

  1. TsikourasP. AntsaklisP. NikolettosK. KotanidouS. KritsotakiN. BothouA. AndreouS. NalmpantiT. ChalkiaK. SpanakisV. IatrakisG. NikolettosN. Diagnosis, prevention, and management of fetal growth restriction (FGR).J. Pers. Med.202414769810.3390/jpm1407069839063953
    [Google Scholar]
  2. GuillotE. LemayA. AlloucheM. Vitorino SilvaS. CoppolaH. SabatierF. Dignat-GeorgeF. SarreA. PeyterA.C. SimonciniS. YzydorczykC. Resveratrol reverses endothelial colony-forming cell dysfunction in adulthood in a rat model of intrauterine growth restriction.Int. J. Mol. Sci.20232411974710.3390/ijms2411974737298697
    [Google Scholar]
  3. SreekanthaS. WangY. SakuraiR. LiuJ. RehanV.K. Maternal food restriction-induced intrauterine growth restriction in a rat model leads to sex-specific adipogenic programming.FASEB J.20203412160731608510.1096/fj.202000985RR33047380
    [Google Scholar]
  4. GilleyS.P. ZarateM.A. ZhengL. JambalP. YazzaD.N. ChintapalliS.V. MacLeanP.S. WrightC.J. RozanceP.J. ShankarK. Metabolic and fecal microbial changes in adult fetal growth restricted mice.Pediatr. Res.202495364765910.1038/s41390‑023‑02869‑837935884
    [Google Scholar]
  5. CaiM. ZhangJ. ChenH. PanY.X. A maternal low-protein diet during gestation induces hepatic autophagy-related gene expression in a sex-specific manner in Sprague-Dawley rats.Br. J. Nutr.2022128459260310.1017/S000711452100363934511147
    [Google Scholar]
  6. HillK.B. MullenG.P. NagareddyP.R. ZimmermanK.A. RudolphM.C. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming.Am. J. Physiol. Endocrinol. Metab.20243274E478E49710.1152/ajpendo.00140.202439171752
    [Google Scholar]
  7. DapkekarP. BhaleraoA. KawathalkarA. VijayN. Risk factors associated with intrauterine growth restriction: A case-control study.Cureus2023156e4017810.7759/cureus.4017837431363
    [Google Scholar]
  8. AmelioG.S. ProviteraL. RaffaeliG. TripodiM. AmodeoI. GuldenS. CortesiV. ManzoniF. CervelliniG. TomaselliA. PravatàV. GarridoF. VillamorE. MoscaF. CavallaroG. Endothelial dysfunction in preterm infants: The hidden legacy of uteroplacental pathologies.Front Pediatr.202210104191910.3389/fped.2022.104191936405831
    [Google Scholar]
  9. GaoH. ChenX. ZhaoJ. XueZ. ZhangL. ZhaoF. WangB. WangL. Integrative analysis of liver metabolomics and transcriptomics reveals oxidative stress in piglets with intrauterine growth restriction.Biology20221110143010.3390/biology1110143036290334
    [Google Scholar]
  10. HryciwD.H. Early life nutrition and the development of offspring metabolic health.Int. J. Mol. Sci.20222315809610.3390/ijms2315809635897668
    [Google Scholar]
  11. SafainK.S. CrouseM.S. SyringJ.G. EntzieY.L. KingL.E. HirchertM.R. WardA.K. ReynoldsL.P. BorowiczP.P. DahlenC.R. SwansonK.C. CatonJ.S. One-carbon metabolites supplementation and nutrient restriction alter the fetal liver metabolomic profile during early gestation in beef heifers.J. Anim. Sci.2024102skae25810.1093/jas/skae25839234988
    [Google Scholar]
  12. ZhangJ. XuW. YangY. ZhangL. WangT. Leucine alters blood parameters and regulates hepatic protein synthesis via mammalian/mechanistic target of rapamycin activation in intrauterine growth-restricted piglets.J. Anim. Sci.20221004skac10910.1093/jas/skac10935366314
    [Google Scholar]
  13. Galvan-MartinezD.H. Bosquez-MendozaV.M. Ruiz-NoaY. Ibarra-ReynosoL.R. Barbosa-SabaneroG. Lazo-de-la-Vega-MonroyM.L. Nutritional, pharmacological, and environmental programming of NAFLD in early life.Am. J. Physiol. Gastrointest. Liver Physiol.20233242G99G11410.1152/ajpgi.00168.202236472341
    [Google Scholar]
  14. AnderssonA. KellyM. ImajoK. NakajimaA. FallowfieldJ.A. HirschfieldG. PavlidesM. SanyalA.J. NoureddinM. BanerjeeR. DennisA. HarrisonS. Clinical utility of magnetic resonance imaging biomarkers for identifying nonalcoholic steatohepatitis patients at high risk of progression: A multicenter pooled data and meta-analysis.Clin. Gastroenterol. Hepatol.2022201124512461.e310.1016/j.cgh.2021.09.04134626833
    [Google Scholar]
  15. TongX. WangQ. ZhaoX. SunY. WuX. YangL. LuZ. OuX. JiaJ. YouH. Histological assessment based on liver biopsy: The value and challenges in NASH drug development.Acta Pharmacol. Sin.20224351200120910.1038/s41401‑022‑00874‑x35165400
    [Google Scholar]
  16. WangF. YangQ. ZhangY. LiuJ. LiuM. ZhuJ. 3D variable flip angle T1 mapping for differentiating benign and malignant liver lesions at 3T: Comparison with diffusion weighted imaging.BMC Med. Imaging202222114610.1186/s12880‑022‑00873‑835982406
    [Google Scholar]
  17. von UlmensteinS. BogdanovicS. Honcharova-BiletskaH. BlümelS. DeibelA.R. SegnaD. JüngstC. WeberA. KuntzenT. GublerC. ReinerC.S. Assessment of hepatic fibrosis and inflammation with look-locker T1 mapping and magnetic resonance elastography with histopathology as reference standard.Abdom. Radiol.202247113746375710.1007/s00261‑022‑03647‑636038643
    [Google Scholar]
  18. DingZ. SongH. WangF. Role of lipins in cardiovascular diseases.Lipids Health Dis.202322119610.1186/s12944‑023‑01961‑637964368
    [Google Scholar]
  19. WatahikiA. HoshikawaS. ChibaM. EgusaH. FukumotoS. InuzukaH. Deficiency of Lipin2 results in enhanced NF-κB signaling and osteoclast formation in RAW-D murine macrophages.Int. J. Mol. Sci.2021226289310.3390/ijms2206289333809261
    [Google Scholar]
  20. PapsdorfK. MiklasJ.W. HosseiniA. CabrujaM. MorrowC.S. SaviniM. YuY. Silva-GarcíaC.G. HaseleyN.R. MurphyL.M. YaoP. de LaunoitE. DixonS.J. SnyderM.P. WangM.C. MairW.B. BrunetA. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids.Nat. Cell Biol.202325567268410.1038/s41556‑023‑01136‑637127715
    [Google Scholar]
  21. HuangS. WuZ. YuanX. LiN. LiT. WangJ. LevesqueC.L. FengC. Transcriptome differences suggest novel mechanisms for intrauterine growth restriction mediated dysfunction in small intestine of neonatal piglets.Front. Physiol.20201156110.3389/fphys.2020.0056132655399
    [Google Scholar]
  22. LinC. DongZ. SongJ. WangS. YangY. LiH. FengZ. PeiY. Differences in histomorphology and expression of key lipid regulated genes of four adipose tissues from Tibetan pigs.PeerJ202311e1455610.7717/peerj.1455636643642
    [Google Scholar]
  23. CollinsK.H. GuiC. ElyE.V. LenzK.L. HarrisC.A. GuilakF. MeyerG.A. Leptin mediates the regulation of muscle mass and strength by adipose tissue.J. Physiol.2022600163795381710.1113/JP28303435844058
    [Google Scholar]
  24. Fader KaiserC.M. RomanoP.S. VanrellM.C. PocognoniC.A. JacobJ. CarusoB. DelguiL.R. Biogenesis and breakdown of lipid droplets in pathological conditions.Front. Cell Dev. Biol.2022982624810.3389/fcell.2021.82624835198567
    [Google Scholar]
  25. Barnes-VélezJ.A. Aksoy YasarF.B. HuJ. Myelin lipid metabolism and its role in myelination and myelin maintenance.Innovation20234110036010.1016/j.xinn.2022.10036036588745
    [Google Scholar]
  26. ChanD. Jia HengT.Y. ZhengR.T. ChangS. LoyS.L. KuC.W. ChuaM.C. YapF. Knowledge, attitudes, and practices of paediatric medical officers and registrars on the developmental origins of health and disease in a tertiary women’s and children’s hospital.BMC Med. Educ.2024241109710.1186/s12909‑024‑06036‑339375655
    [Google Scholar]
  27. LapehnS. PaquetteA.G. The placental epigenome as a molecular link between prenatal exposures and fetal health outcomes through the DOHaD hypothesis.Curr. Environ. Health Rep.20229349050110.1007/s40572‑022‑00354‑835488174
    [Google Scholar]
  28. HsuC.N. TainY.L. Animal models for DOHaD research: Focus on hypertension of developmental origins.Biomedicines20219662310.3390/biomedicines906062334072634
    [Google Scholar]
  29. PanagiotidouA. ChatzakisC. VerveriA. EleftheriadesM. SotiriadisA. The effect of maternal diet and physical activity on the epigenome of the offspring.Genes20241517610.3390/genes1501007638254965
    [Google Scholar]
  30. WangT. ChenP. BianD. XiaoE. LiD. Correlations of PPARα and PPARγ expressions with 1 H-MRS quantified hepatic fat content in pups of rats that experienced intrauterine growth restriction.J. Matern. Fetal Neonatal Med.202134460661310.1080/14767058.2019.161176631068026
    [Google Scholar]
  31. BrownLD RozancePJ WangD Increased hepatic glucose production with lower oxidative metabolism in the growth-restricted fetus.JCI Insight2024910e17649710.1172/jci.insight.176497
    [Google Scholar]
  32. BrownLD WesolowskiSR Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency.Am J Physiol Endocrinol Metab20233246E556E568
    [Google Scholar]
  33. WeiY.S. TangW.J. MaoP.Y. MaoJ.D. NiZ.X. HouK.W. ValencakT.G. LiuD.R. JiJ.F. WangH.F. Sexually dimorphic response to hepatic injury in newborn suffering from intrauterine growth restriction.Adv. Sci.20241130240309510.1002/advs.20240309538867614
    [Google Scholar]
  34. GaoH. ZhangL. WangL. LiuX. HouX. ZhaoF. YanH. WangL. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development.BMC Genomics202021170110.1186/s12864‑020‑07094‑933032518
    [Google Scholar]
  35. Van GinnekenC. AyusoM. Van BockstalL. Van CruchtenS. Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions.Mol. Reprod. Dev.202390769770710.1002/mrd.2361435652465
    [Google Scholar]
  36. ObmannV.C. BerzigottiA. CatucciD. EbnerL. GräniC. HeverhagenJ.T. ChristeA. HuberA.T. T1 mapping of the liver and the spleen in patients with liver fibrosis—does normalization to the blood pool increase the predictive value?Eur. Radiol.20213164308431810.1007/s00330‑020‑07447‑833313965
    [Google Scholar]
  37. WanQ. PengH. LiuF. LiuX. ChengC. TieC. DengJ. LyuJ. JiaY. WangY. ZhengH. LiangD. LiuX. ZouC. Ability of dynamic gadoxetic acid–enhanced magnetic resonance imaging combined with water-specific T1 mapping to reflect inflammation in a rat model of early-stage nonalcoholic steatohepatitis.Quant. Imaging Med. Surg.20241421591160110.21037/qims‑23‑48238415124
    [Google Scholar]
  38. PonsiglioneA. GambardellaM. GreenR. CantoniV. NappiC. AscioneR. De GiorgiM. CuocoloR. PisaniA. PetrettaM. CuocoloA. ImbriacoM. Cardiovascular magnetic resonance native T1 mapping in Anderson-Fabry disease: A systematic review and meta-analysis.J. Cardiovasc. Magn. Reson.20222413110.1186/s12968‑022‑00859‑z35606874
    [Google Scholar]
  39. LiJ. LiuH. ZhangC. YangS. WangY. ChenW. LiX. WangD. Native T1 mapping compared to ultrasound elastography for staging and monitoring liver fibrosis: An animal study of repeatability, reproducibility, and accuracy.Eur. Radiol.202030133734510.1007/s00330‑019‑06335‑031338650
    [Google Scholar]
  40. MeloniA. CarnevaleA. GaioP. PositanoV. PassantinoC. PepeA. BarisonA. TodiereG. GrigoratosC. NovaniG. PistoiaL. GigantiM. CademartiriF. CossuA. Liver T1 and T2 mapping in a large cohort of healthy subjects: Normal ranges and correlation with age and sex.Magn. Reson. Mater. Biol. Phys. Med.20233719310010.1007/s10334‑023‑01135‑638019376
    [Google Scholar]
  41. StelterJ. WeissK. SteinhelferL. SpiekerV. Huaroc MoquillazaE. ZhangW. MakowskiM.R. SchnabelJ.A. KainzB. BrarenR.F. KarampinosD.C. Simultaneous whole-liver water T1 and T2 mapping with isotropic resolution during free-breathing.NMR Biomed.20243712e521610.1002/nbm.521639099162
    [Google Scholar]
  42. GhavamianA. LiuC. KangB. YuanX. WangX. GaoL. ZhaoX. Liver T1 relaxation time of the ‘normal liver’ in healthy Asians: Measurement with MOLLI and B 1 -corrected VFA methods at 3T.Br. J. Radiol.20229511332021100810.1259/bjr.2021100835324344
    [Google Scholar]
  43. ErdenA. Kuru ÖzD. PekerE. KulM. Özalp AteşF.S. ErdenI. İdilmanR. MRI quantification techniques in fatty liver: The diagnostic performance of hepatic T1, T2, and stiffness measurements in relation to the proton density fat fraction.Diagn. Interv. Radiol.202127171410.5152/dir.2020.1965433290237
    [Google Scholar]
  44. AhnJ.H. YuJ.S. ParkK.S. KangS.H. HuhJ.H. ChangJ.S. LeeJ.H. KimM.Y. NickelM.D. KannengiesserS. KimJ.Y. KohS.B. Effect of hepatic steatosis on native T1 mapping of 3T magnetic resonance imaging in the assessment of T1 values for patients with non-alcoholic fatty liver disease.Magn. Reson. Imaging2021801810.1016/j.mri.2021.03.01533798658
    [Google Scholar]
  45. KimJ.W. LeeY.S. ParkY.S. KimB.H. LeeS.Y. YeonJ.E. LeeC.H. Multiparametric MR index for the diagnosis of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease.Sci. Rep.2020101267110.1038/s41598‑020‑59601‑332060386
    [Google Scholar]
  46. WangQ. ShiJ. ZhaoM. RuanG. DaiZ. XueY. ShiD. XuC. YuO. WangF. XueZ. Microbial treatment of alcoholic liver disease: A systematic review and meta-analysis.Front. Nutr.20229105426510.3389/fnut.2022.105426536479298
    [Google Scholar]
  47. YaoW. XuJ. TangW. GaoC. TaoL. YuJ. LvJ. WangH. FanY. XuD.X. HuangY. Developmental toxicity of perfluorohexane sulfonate at human relevant dose during pregnancy via disruption in placental lipid homeostasis.Environ. Int.202317710801410.1016/j.envint.2023.10801437315490
    [Google Scholar]
  48. ZhangY. LvJ. FanY.J. TaoL. XuJ. TangW. SunN. ZhaoL.L. XuD.X. HuangY. Evaluating the effect of gestational exposure to perfluorohexane sulfonate on placental development in mice combining alternative splicing and gene expression analyses.environ. health perspect.20231311111701110.1289/EHP1321737995155
    [Google Scholar]
  49. O’CallaghanJ.L. CliftonV.L. PrentisP. EwingA. MillerY.D. PelzerE.S. Modulation of placental gene expression in small-for-gestational-age infants.Genes20201118010.3390/genes1101008031936801
    [Google Scholar]
  50. RuanoC.S.M. ApicellaC. JacquesS. GascoinG. GasparC. MirallesF. MéhatsC. VaimanD. Alternative splicing in normal and pathological human placentas is correlated to genetic variants.Hum. Genet.2021140582784810.1007/s00439‑020‑02248‑x33433680
    [Google Scholar]
  51. DellaquaT.T. FranchiF.F. dos SantosP.H. GirotoA.B. NunesS.G. de LimaV.A.V. GuilhermeV.B. FontesP.K. SudanoM.J. de Souza CastilhoA.C. Molecular phenotypes of bovine blastocyst derived from in vitro-matured oocyte supplemented with PAPP-A.Vet. Res. Commun.20234731263127210.1007/s11259‑023‑10072‑736653723
    [Google Scholar]
  52. PallioG. New insights into adipose tissue metabolic function and dysfunction.Int. J. Mol. Sci.20232412995310.3390/ijms2412995337373101
    [Google Scholar]
  53. WangB. HuZ. CuiL. ZhaoM. SuZ. JiangY. LiuJ. ZhaoY. HouY. YangX. ZhangC. GuoB. LiD. ZhaoL. ZhengS. ZhaoY. YangW. WangD. YuS. ZhuS. YanY. YuanG. LiK. ZhangW. QinL. ZhangW. SunF. LuoJ. ZhengR. βAR-mTOR-lipin1 pathway mediates PKA-RIIβ deficiency-induced adipose browning.Theranostics202414135316533510.7150/thno.9704639267778
    [Google Scholar]
  54. HanX. HuangS. ZhuangZ. ZhangX. XieM. LouN. HuaM. ZhuangX. YuS. ChenS. Phosphatidate phosphatase Lipin1 involves in diabetic encephalopathy pathogenesis via regulating synaptic mitochondrial dynamics.Redox Biol.20246910299610.1016/j.redox.2023.10299638103341
    [Google Scholar]
  55. BamgboseT.T. SchilkeR.M. IgiehonO.O. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution.bioRxiv20232023.10.23.56358710.1101/2023.10.23.56358737961352
    [Google Scholar]
  56. SchilkeR.M. BlackburnC.M.R. RaoS. KrzywanskiD.M. FinckB.N. WoolardM.D. Macrophage-associated lipin-1 promotes β-oxidation in response to proresolving stimuli.Immunohorizons202041065966910.4049/immunohorizons.200004733077427
    [Google Scholar]
  57. HoffmanD.H. AyoolaA. NickelD. HanF. ChandaranaH. ShanbhogueK.P. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis.Abdom. Radiol.202045369270010.1007/s00261‑019‑02382‑931875241
    [Google Scholar]
  58. TorrenceM.E. MacArthurM.R. HosiosA.M. ValvezanA.J. AsaraJ.M. MitchellJ.R. ManningB.D. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals.eLife202110e6332610.7554/eLife.6332633646118
    [Google Scholar]
  59. BleyH. SchöbelA. HerkerE. Whole lotta lipids—from HCV RNA replication to the mature viral particle.Int. J. Mol. Sci.2020218288810.3390/ijms2108288832326151
    [Google Scholar]
  60. Filali-MouncefY. HunterC. RoccioF. ZagkouS. DupontN. PrimardC. Proikas-CezanneT. ReggioriF. The ménage à trois of autophagy, lipid droplets and liver disease.Autophagy2022181507210.1080/15548627.2021.189565833794741
    [Google Scholar]
  61. ZhangX. HuangS. ZhuangZ. Lipin2 ameliorates diabetic encephalopathy via suppressing JNK/ERK-mediated NLRP3 inflammasome overactivation.Int Immunopharmacol202311810993010.1016/j.intimp.2023.109930
    [Google Scholar]
  62. AmdiC. LarsenC. JensenK.M.R. TangeE.Ø. SatoH. WilliamsA.R. Intrauterine growth restriction in piglets modulates postnatal immune function and hepatic transcriptional responses independently of energy intake.Front. Physiol.202314125495810.3389/fphys.2023.125495837916220
    [Google Scholar]
  63. ZhangH. ChenY. ChenY. JiS. JiaP. XuJ. LiY. WangT. Pterostilbene attenuates liver injury and oxidative stress in intrauterine growth–retarded weanling piglets.Nutrition20218111094010.1016/j.nut.2020.11094032755743
    [Google Scholar]
  64. TamakiN. AjmeraV. LoombaR. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD.Nat. Rev. Endocrinol.2022181556610.1038/s41574‑021‑00584‑034815553
    [Google Scholar]
  65. ChenR. WangT. TongH. ZhangX. RuanJ. QiH. LiuX. HeG. METTL3 and IGF2BP2 coordinately regulate FOSL1 mRNA via m6A modification, suppressing trophoblast invasion and contributing to fetal growth restriction.FASEB J.20243822e7015410.1096/fj.202401665R39565355
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056296733250514081236
Loading
/content/journals/cmir/10.2174/0115734056296733250514081236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test