Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Purpose

Individuals with depression have an increased risk of cardiovascular disease, and more often have a poor prognosis with cardiovascular disease. This study aimed to investigate the impact of depression on Left Ventricular (LV) alterations using Cardiovascular Magnetic Resonance Feature-tracking (CMR-FT).

Methods

Seven anesthetized, healthy Chinese miniature swine were included in the study. Basic data, including CMR scans at baseline and after 14 days of depression modeling, were collected. Behavioral tests, including the Open-field Test (OFT), Sucrose Preference Test (SPT), and measurements of the time taken to consume a specific amount of food and sugar, were conducted to assess the success of the depression models. CMR cine images were acquired and CVI software was employed to analyze Global Longitudinal Strain (GLS), Global Circumferential Strain (GCS), and Global Radial Strain (GRS). Late Gadolinium Enhancement (LGE) imaging was used to detect myocardial infarction and/or scar.

Results

The outcomes demonstrated successful depression modeling, indicated by reduced scores in the OFT and SPT, as well as an extended time to intake food and sugar compared to baseline. However, no significant differences were observed in LV End-diastolic Volume (LVEDV), LV End-systolic Volume (LVESV), LV Ejection Fraction (LVEF), LV End-diastolic Myocardial Mass (LVMASSED), and Cardiac Output (CO) before and after modeling. Regarding LV global strain parameters, there was a downward trend in GRS (25.35% ± 6.9% . 22.86% ± 6.4%, P=0.021), GCS (-16.71% ± 4.2% . -14.78% ± 2.3%, =0.043), and GLS (-17.66% ± 2.9% . -14.53% ± 2.5%, =0.056), respectively, after modeling. GRS and GCS were significantly reduced after modeling compared to baseline.

Conclusion

The study suggests that depression may contribute to early LV systolic dysfunction, particularly affecting LV GCS and GRS.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056291652240417051951
2024-01-01
2025-08-21
The full text of this item is not currently available.

References

  1. AltwaijriY.A. SubaieA.A.S. HabeebA.A. BilalL. Al-DesoukiM. AradatiM. KingA.J. SampsonN.A. KesslerR.C. Lifetime prevalence and age-of-onset distributions of mental disorders in the Saudi National Mental Health Survey.Int. J. Methods Psychiatr. Res.2020293e183610.1002/mpr.183633245595
    [Google Scholar]
  2. SilvaV. CostaP. PereiraI. FariaR. SalgueiraA.P. CostaM.J. SousaN. CerqueiraJ.J. MorgadoP. Depression in medical students: Insights from a longitudinal study.BMC Med. Educ.201717118410.1186/s12909‑017‑1006‑029017594
    [Google Scholar]
  3. RaičM. Depression and heart diseases: Leading health problems.Psychiatr. Danub.201729S477077729278623
    [Google Scholar]
  4. WeiJ. RooksC. RamadanR. ShahA.J. BremnerJ.D. QuyyumiA.A. KutnerM. VaccarinoV. Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease.Am. J. Cardiol.2014114218719210.1016/j.amjcard.2014.04.02224856319
    [Google Scholar]
  5. KimY.H. KimS.H. LimS.Y. ChoG.Y. BaikI.K. LimH.E. NaJ.O. HanS.W. KoY.H. ShinC. Relationship between depression and subclinical left ventricular changes in the general population.Heart201298181378138310.1136/heartjnl‑2012‑30218022843093
    [Google Scholar]
  6. SchmalingK.B. FiedelakJ.I. KatonW.J. BaderJ.O. BuchwaldD.S. Prospective study of the prognosis of unexplained chronic fatigue in a clinic-based cohort.Psychosom. Med.20036561047105410.1097/01.PSY.0000088587.29901.6914645784
    [Google Scholar]
  7. Frasure-SmithN. LespéranceF. TalajicM. Depression and 18-month prognosis after myocardial infarction.Circulation1995914999100510.1161/01.CIR.91.4.9997531624
    [Google Scholar]
  8. MoazzamiK. SullivanS. LimaB.B. KimJ.H. HammadahM. AlmuwaqqatZ. ShahA.J. HajjarI. GoldsteinF.C. LeveyA.I. BremnerJ.D. QuyyumiA.A. VaccarinoV. Mental stress-induced myocardial ischemia and cognitive impairment in coronary atherosclerosis.J. Psychosom. Res.202114111034210.1016/j.jpsychores.2020.11034233360843
    [Google Scholar]
  9. VaccarinoV. SullivanS. HammadahM. WilmotK. Al MheidI. RamadanR. ElonL. PimpleP.M. GarciaE.V. NyeJ. ShahA.J. AlkhoderA. LevantsevychO. GayH. ObideenM. HuangM. LewisT.T. BremnerJ.D. QuyyumiA.A. RaggiP. Mental stress-induced-myocardial ischemia in young patients with recent myocardial infarction: Sex differences and mechanisms.Circulation2018137879480510.1161/CIRCULATIONAHA.117.03084929459465
    [Google Scholar]
  10. NagataY. TakeuchiM. WuV.C.C. IzumoM. SuzukiK. SatoK. SeoY. AkashiY.J. AonumaK. OtsujiY. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction.JACC Cardiovasc. Imaging20158323524510.1016/j.jcmg.2014.12.00925682511
    [Google Scholar]
  11. SchneeweisC. QiuJ. SchnackenburgB. BergerA. KelleS. FleckE. GebkerR. Value of additional strain analysis with feature tracking in dobutamine stress cardiovascular magnetic resonance for detecting coronary artery disease.J. Cardiovasc. Magn. Reson.20141617210.1186/s12968‑014‑0072‑225316531
    [Google Scholar]
  12. Antkiewicz-MichalukL. WąsikA. MożdżeńE. RomańskaI. MichalukJ. Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat.Neurotox. Res.2014261859810.1007/s12640‑013‑9454‑824407488
    [Google Scholar]
  13. FahmyH.M. KhadrawyY.A. DaimA.E.T.M. ElfekyA.S. Abd RaboA.A. MustafaA.B. MostafaI.T. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model.Physiol. Behav.202022211293410.1016/j.physbeh.2020.11293432353367
    [Google Scholar]
  14. KotanV.O. SarandolE. KirhanE. OzkayaG. KirliS. Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: A 24-week follow-up study.Prog. Neuropsychopharmacol. Biol. Psychiatry20113551284129010.1016/j.pnpbp.2011.03.02121515329
    [Google Scholar]
  15. ParéW.P. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats.Physiol. Behav.199455343343910.1016/0031‑9384(94)90097‑38190758
    [Google Scholar]
  16. WillnerP. TowellA. SampsonD. SophokleousS. MuscatR. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant.Psychopharmacology198793335836410.1007/BF001872573124165
    [Google Scholar]
  17. Schulz-MengerJ. BluemkeD.A. BremerichJ. FlammS.D. FogelM.A. FriedrichM.G. KimR.J. von BrenkenhoffK.F. KramerC.M. PennellD.J. PleinS. NagelE. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update.J. Cardiovasc. Magn. Reson.20202211910.1186/s12968‑020‑00610‑632160925
    [Google Scholar]
  18. HeJ. YangW. WuW. LiS. YinG. ZhuangB. XuJ. SunX. ZhouD. WeiB. SirajuddinA. TengZ. ZhaoS. KureshiF. LuM. Early diastolic longitudinal strain rate at mri and outcomes in heart failure with preserved ejection fraction.Radiology2021301358259210.1148/radiol.202121018834519577
    [Google Scholar]
  19. FaragliA. TanacliR. KolpC. LapinskasT. StehningC. SchnackenburgB. Lo MuzioF.P. PernaS. PieskeB. NagelE. PostH. KelleS. AlognaA. Cardiovascular magnetic resonance feature tracking in pigs: A reproducibility and sample size calculation study.Int. J. Cardiovasc. Imaging202036470371210.1007/s10554‑020‑01767‑y31950298
    [Google Scholar]
  20. LimC. BlaszczykE. RiazyL. WiesemannS. SchülerJ. von BrenkenhoffK.F. MengerS.J. Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects—influence of segmentation and analysis software.Eur. Radiol.20213163962397210.1007/s00330‑020‑07539‑533277669
    [Google Scholar]
  21. HaoY. GeH. SunM. GaoY. Selecting an appropriate animal model of depression.Int. J. Mol. Sci.20192019482710.3390/ijms2019482731569393
    [Google Scholar]
  22. SongJ. KimY.K. Animal models for the study of depressive disorder.CNS Neurosci. Ther.202127663364210.1111/cns.1362233650178
    [Google Scholar]
  23. ShamonS.D. PerezM.I. Blood pressure-lowering efficacy of reserpine for primary hypertension.Cochrane Libr.2016201612CD00765510.1002/14651858.CD007655.pub327997978
    [Google Scholar]
  24. HarroJ. Animal models of depression: Pros and cons.Cell Tissue Res.2019377152010.1007/s00441‑018‑2973‑030560458
    [Google Scholar]
  25. XuJ. YangW. ZhaoS. LuM. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives.Eur. Radiol.20223285424543510.1007/s00330‑022‑08629‑235201410
    [Google Scholar]
  26. AmzulescuM.S. De CraeneM. LangetH. PasquetA. VancraeynestD. PouleurA.C. VanoverscheldeJ.L. GerberB.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies.Eur. Heart J. Cardiovasc. Imaging201920660561910.1093/ehjci/jez04130903139
    [Google Scholar]
  27. EdvardsenT. KlaeboeL.G. Imaging and heart failure.Curr. Opin. Cardiol.201934549049410.1097/HCO.000000000000065331219880
    [Google Scholar]
  28. MarwickT.H. ShahS.J. ThomasJ.D. Myocardial strain in the assessment of patients with heart failure: a review.JAMA Cardiol.20194328729410.1001/jamacardio.2019.005230810702
    [Google Scholar]
  29. VoigtJ.U. CvijicM. 2- and 3-dimensional myocardial strain in cardiac health and disease.JACC Cardiovasc. Imaging20191291849186310.1016/j.jcmg.2019.01.04431488253
    [Google Scholar]
  30. NaguehS.F. Left ventricular diastolic function: Understanding pathophysiology, diagnosis, and prognosis with echocardiography.JACC Cardiovasc. Imaging202013122824410.1016/j.jcmg.2018.10.03830982669
    [Google Scholar]
  31. ObokataM. ReddyY.N.V. BorlaugB.A. Diastolic dysfunction and heart failure with preserved ejection fraction: Understanding mechanisms by using noninvasive methods.JACC Cardiovasc. Imaging202013124525710.1016/j.jcmg.2018.12.03431202759
    [Google Scholar]
  32. NaguehS.F. ShahD.J. Echocardiography first, but here comes cmr for grading left ventricular diastolic function.JACC Cardiovasc. Imaging202013122543254510.1016/j.jcmg.2020.07.00332828788
    [Google Scholar]
  33. VoigtJ.U. PedrizzettiG. LysyanskyP. MarwickT.H. HouleH. BaumannR. PedriS. ItoY. AbeY. MetzS. SongJ.H. HamiltonJ. SenguptaP.P. KoliasT.J. d’HoogeJ. AurigemmaG.P. ThomasJ.D. BadanoL.P. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.Eur. Heart J. Cardiovasc. Imaging201516111110.1093/ehjci/jeu18425525063
    [Google Scholar]
  34. SmisethO.A. TorpH. OpdahlA. HaugaaK.H. UrheimS. Myocardial strain imaging: How useful is it in clinical decision making?Eur. Heart J.201637151196120710.1093/eurheartj/ehv52926508168
    [Google Scholar]
  35. DattiloG. ImbalzanoE. LamariA. CasaleM. PaunovicN. BusaccaP. Di BellaG. Ischemic heart disease and early diagnosis. Study on the predictive value of 2D strain.Int. J. Cardiol.201621515015610.1016/j.ijcard.2016.04.03527111182
    [Google Scholar]
  36. KidoT. NagaoM. KidoT. KurataA. MiyagawaM. OgimotoA. MochizukiT. Stress/rest circumferential strain in non-ischemia, ischemia, and infarction--quantification by 3 Tesla tagged magnetic resonance imaging.Circ. J.20137751235124110.1253/circj.CJ‑12‑110623386312
    [Google Scholar]
  37. TamarappooB. SamuelT.J. ElboudwarejO. ThomsonL.E.J. AldiwaniH. WeiJ. MehtaP. ChengS. SharifB. AlBadriA. HandbergE.M. PetersenJ. PepineC.J. NelsonM.D. MerzB.C.N. Left ventricular circumferential strain and coronary microvascular dysfunction: A report from the Women’s Ischemia Syndrome Evaluation Coronary Vascular Dysfunction (WISE-CVD) Project.Int. J. Cardiol.2021327253010.1016/j.ijcard.2020.11.00633202262
    [Google Scholar]
  38. JesbergerJ.A. RichardsonJ.S. Animal models of depression: Parallels and correlates to severe depression in humans.Biol. Psychiatry198520776478410.1016/0006‑3223(85)90156‑82860930
    [Google Scholar]
  39. BarrA.M. MarkouA. Psychostimulant withdrawal as an inducing condition in animal models of depression.Neurosci. Biobehav. Rev.2005294-567570610.1016/j.neubiorev.2005.03.01215893821
    [Google Scholar]
  40. SinghR.B. FedackoJ. PellaD. FatimaG. ElkilanyG. MoshiriM. HristovaK. JakabcinP. VaňovaN. High exogenous antioxidant, restorative treatment (heart) for prevention of the six stages of heart failure: The heart diet.Antioxidants2022118146410.3390/antiox1108146436009183
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056291652240417051951
Loading
/content/journals/cmir/10.2174/0115734056291652240417051951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test