Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Lung cancer patients with post-chemotherapy may have disconnected or weakened function connections within brain networks.

Objective

This study aimed to explore the abnormality of brain functional networks in lung cancer patients with post-chemotherapy by modular edge analysis.

Methods

Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 40 patients after chemotherapy, 40 patients before chemotherapy and 40 normal controls. Patients in all three groups were age and sex well-matched. Then, modular edge analysis was applied to assess brain functional network alterations.

Results

Post-chemotherapy patients had the worst MoCA scores among the three groups ( < 0.001). In intra-modular connections, compared with normal controls, the patients after chemotherapy had decreased connection strengths in the occipital lobe module ( < 0.05). Compared with the non-chemotherapy group, the patients after chemotherapy had decreased connection strengths in the subcortical module ( < 0.05). In inter-modular connections, compared with normal controls, the patients after chemotherapy had decreased connection strength in the frontal-temporal lobe modules ( < 0.05). Compared with the non-chemotherapy group, the patients after chemotherapy had decreased connection strength in the subcortical-temporal lobe modules ( < 0.05).

Conclusion

The results reveal that chemotherapy can disrupt connections in brain functional networks. As far as we know, the use of modular edge analysis to report changes in brain functional brain networks associated with chemotherapy was rarely reported. Modular edge analysis may play a crucial part in predicting the clinical outcome for the patients after chemotherapy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056277364231226081249
2024-01-01
2025-09-12
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056277364.html?itemId=/content/journals/cmir/10.2174/0115734056277364231226081249&mimeType=html&fmt=ahah

References

  1. BadeB.C. Dela CruzC.S. Lung Cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.00132008623
    [Google Scholar]
  2. WuF. WangL. ZhouC. Lung cancer in China: Current and prospect.Curr. Opin. Oncol.2021331404610.1097/CCO.000000000000070333165004
    [Google Scholar]
  3. FujitaS. KotakeK. Chemotherapy.Jpn. J. Clin. Med.201472102107
    [Google Scholar]
  4. ZraikI.M. Heß-BuschY. Management of chemotherapy side effects and their long-term sequelae.Urologe A202160786287110.1007/s00120‑021‑01569‑734185118
    [Google Scholar]
  5. RaoV. BhushanR. KumariP. CherukuS.P. RavichandiranV. KumarN. Chemobrain: A review on mechanistic insight, targets and treatments.Adv. Cancer Res.2022155297610.1016/bs.acr.2022.04.00135779876
    [Google Scholar]
  6. SimóM. Rifà-RosX. Rodriguez-FornellsA. BrunaJ. Chemobrain: A systematic review of structural and functional neuroimaging studies.Neurosci. Biobehav. Rev.20133781311132110.1016/j.neubiorev.2013.04.01523660455
    [Google Scholar]
  7. GuoY. LiuS. YanF. YinN. NiJ. LiC. PanX. MaR. WuJ. LiS. LiX. Associations between disrupted functional brain network topology and cognitive impairment in patients with rectal cancer during chemotherapy.Front. Oncol.20221292777110.3389/fonc.2022.92777136505777
    [Google Scholar]
  8. YouJ. ZhangJ. ShangS. GuW. HuL. ZhangY. XiongZ. ChenY.C. YinX. Altered brain functional network topology in lung cancer patients after chemotherapy.Front. Neurol.20211271007810.3389/fneur.2021.71007834408724
    [Google Scholar]
  9. HuL. DingS. ZhangY. YouJ. ShangS. WangP. YinX. XiaW. ChenY.C. Dynamic functional network connectivity reveals the brain functional alterations in lung cancer patients after chemotherapy.Brain Imaging Behav.20221631040104810.1007/s11682‑021‑00575‑934718941
    [Google Scholar]
  10. What is an MRI scan and what can it do?Drug Ther. Bull.2011491214114410.1136/dtb.2011.02.007322170411
    [Google Scholar]
  11. RaimondoL. OliveiraA.F. HeijJ. PriovoulosN. KunduP. LeoniR.F. van der ZwaagW. Advances in resting state fMRI acquisitions for functional connectomics.Neuroimage202124311850310.1016/j.neuroimage.2021.11850334479041
    [Google Scholar]
  12. NoonanM.P. MarsR.B. SalletJ. DunbarR.I.M. FellowsL.K. The structural and functional brain networks that support human social networks.Behav. Brain Res.2018355122310.1016/j.bbr.2018.02.01929471028
    [Google Scholar]
  13. YongW. SongJ. XingC. XuJ.J. XueY. YinX. WuY. ChenY.C. Disrupted topological organization of resting-state functional brain networks in age-related hearing loss.Front. Aging Neurosci.20221490707010.3389/fnagi.2022.90707035669463
    [Google Scholar]
  14. GuanB. XuY. ChenY.C. XingC. XuL. ShangS. XuJ.J. WuY. YanQ. Reorganized brain functional network topology in presbycusis.Front. Aging Neurosci.20221490548710.3389/fnagi.2022.90548735693344
    [Google Scholar]
  15. SunY. DaiZ. LiJ. CollinsonS.L. SimK. Modular‐level alterations of structure-function coupling in schizophrenia connectome.Hum. Brain Mapp.20173842008202510.1002/hbm.2350128032370
    [Google Scholar]
  16. WangR. LinJ. SunC. HuB. LiuX. GengD. LiY. YangL. Topological reorganization of brain functional networks in patients with mitochondrial encephalomyopathy with lactic acidosis and stroke‐like episodes.Neuroimage Clin.20202810248010.1016/j.nicl.2020.10248033395972
    [Google Scholar]
  17. GaleaM. WoodwardM. Mini-Mental State Examination (MMSE).Aust. J. Physiother.200551319810.1016/S0004‑9514(05)70034‑916187459
    [Google Scholar]
  18. NasreddineZ.S. PhillipsN.A. BédirianV. CharbonneauS. WhiteheadV. CollinI. CummingsJ.L. ChertkowH. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment.J. Am. Geriatr. Soc.200553469569910.1111/j.1532‑5415.2005.53221.x15817019
    [Google Scholar]
  19. WangJ. WangX. XiaM. LiaoX. EvansA. HeY. GRETNA: A graph theoretical network analysis toolbox for imaging connectomics.Front. Hum. Neurosci.2015938626175682
    [Google Scholar]
  20. XiaM. WangJ. HeY. BrainNet Viewer: A network visualization tool for human brain connectomics.PLoS One201387e6891010.1371/journal.pone.006891023861951
    [Google Scholar]
  21. Tzourio-MazoyerN. LandeauB. PapathanassiouD. CrivelloF. EtardO. DelcroixN. MazoyerB. JoliotM. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.Neuroimage200215127328910.1006/nimg.2001.097811771995
    [Google Scholar]
  22. AndricM. HassonU. Global features of functional brain networks change with contextual disorder.Neuroimage201511710311310.1016/j.neuroimage.2015.05.02525988223
    [Google Scholar]
  23. SpornsO. BetzelR.F. Modular brain networks.Annu. Rev. Psychol.201667161364010.1146/annurev‑psych‑122414‑03363426393868
    [Google Scholar]
  24. ParraJ.E.D. RíosJ.B. AguirreJ.F.G. Letter to the Editor: Occipital lobe.J. Neurosurg.201311951355135710.3171/2012.7.JNS1274424032708
    [Google Scholar]
  25. YouJ. HuL. ZhangY. ChenF. YinX. JinM. ChenY.C. Altered dynamic neural activity in the default mode network in lung cancer patients after chemotherapy.Med. Sci. Monit.202026e92170010.12659/MSM.92170032069270
    [Google Scholar]
  26. ZhangY. ChenY.C. HuL. YouJ. GuW. LiQ. ChenH. MaoC. YinX. Chemotherapy-induced functional changes of the default mode network in patients with lung cancer.Brain Imaging Behav.202014384785610.1007/s11682‑018‑0030‑y30617783
    [Google Scholar]
  27. JanacsekK. EvansT.M. KissM. ShahL. BlumenfeldH. UllmanM.T. Subcortical cognition: The fruit below the rind.Annu. Rev. Neurosci.202245136138610.1146/annurev‑neuro‑110920‑01354435385670
    [Google Scholar]
  28. KnezevicC.E. ClarkeW. Cancer chemotherapy: The case for therapeutic drug monitoring.Ther. Drug Monit.202042161910.1097/FTD.000000000000070131568180
    [Google Scholar]
  29. PeuskensD. van LoonJ. Van CalenberghF. van den BerghR. GoffinJ. PletsC. Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection.Neurosurgery20045551174118410.1227/01.NEU.0000140843.62311.2415509324
    [Google Scholar]
  30. LvP. MaG. ChenW. LiuR. XinX. LuJ. SuS. LiM. YangS. MaY. RongP. DongN. ChenQ. ZhangX. HanX. ZhangB. Brain morphological alterations and their correlation to tumor differentiation and duration in patients with lung cancer after platinum chemotherapy.Front. Oncol.20221290324910.3389/fonc.2022.90324936016623
    [Google Scholar]
  31. RaichleM.E. MintunM.A. Brain work and brain imaging.Annu. Rev. Neurosci.200629144947610.1146/annurev.neuro.29.051605.11281916776593
    [Google Scholar]
  32. PardridgeW.M. CSF, blood-brain barrier, and brain drug delivery.Expert Opin. Drug Deliv.201613796397510.1517/17425247.2016.117131527020469
    [Google Scholar]
  33. TaillibertS. VoilleryD. Bernard-MartyC. Chemobrain: Is systemic chemotherapy neurotoxic?Curr. Opin. Oncol.200719662362710.1097/CCO.0b013e3282f0e22417906463
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056277364231226081249
Loading
/content/journals/cmir/10.2174/0115734056277364231226081249
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Brain network; Chemotherapy; Lung cancer; Modular edge analysis; s-fMRI; Smoking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test