Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Currently, coronavirus disease 2019 (COVID-19) continues to remain in the pandemic stage, leading to severe challenges in the global public healthcare system. Magnetic resonance imaging (MRI) methods have played an important role in the diagnosis of COVID-19 and the structural evaluation of the affected organs. Reviewing and summarizing the application of MRI has significant clinical implications for COVID-19. Objective: The study aimed to analyze literature related to the application of MRI in COVID-19 using bibliometric tools, to explore the research status, hotspots, and developmental trends in this field, and to provide a reference for the application of MRI in the clinical diagnosis and evaluation of COVID-19.

Methods

We used the Web of Science Core Collection database to search and collect relevant literature on the use of MRI in COVID-19. The authors, institutes, countries, journals, and keyword modules of the bibliometric analysis software CiteSpace and VOSviewer were used to analyze and plot the network map.

Results

A total of 1506 relevant articles were shortlisted through the search; the earliest study was published in 2019, showing an overall upward trend every year. The research was mainly presented as published articles. Clinical neurology was found to be the primary discipline. The United States had the highest publication volume and influence in this field. Countries around the world cooperated more closely. The Cureus Journal of Medical Science was the main periodical to publish articles. Institutes, such as Harvard Medical School, Mayo Clinic, and Massachusetts General Hospital, have published a large number of papers. Some of the high-frequency keywords were “COVID-19”, “SARS-CoV-2”, “magnetic resonance”, “myocarditis”, and “cardiac magnetic resonance imaging”. The keyword clustering study showed that the current research mainly focuses on five “hot” directions.

Conclusion

There is a need to strengthen cross-teamwork and multidisciplinary collaboration in the future to completely explore the positive role of MRI in COVID-19 and to discover breakthroughs for the challenges in the clinical diagnosis and treatment of COVID-19.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056274864231227071026
2024-01-01
2025-09-12
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056274864.html?itemId=/content/journals/cmir/10.2174/0115734056274864231227071026&mimeType=html&fmt=ahah

References

  1. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.2568131967327
    [Google Scholar]
  2. YangX. YuY. XuJ. ShuH. XiaJ. LiuH. WuY. ZhangL. YuZ. FangM. YuT. WangY. PanS. ZouX. YuanS. ShangY. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑532105632
    [Google Scholar]
  3. WuZ McgooganJ. Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in China: Summary of a report of 72 314 cases from the chinese center for disease control and prevention.2020
    [Google Scholar]
  4. OWH WHO Timeline-COVID-192020Available from: https://www.who.int/ news-room/detai l/27-04-2020-who-timeline-covid-19.
  5. Du ToitA. Outbreak of a novel coronavirus.Nat. Rev. Microbiol.202018312310.1038/s41579‑020‑0332‑031988490
    [Google Scholar]
  6. TirozziA. SantonastasoF. de GaetanoG. IacovielloL. GialluisiA. Does COVID-19 increase the risk of neuropsychiatric sequelae? Evidence from a mendelian randomization approach.World J. Psychiatry202212353654010.5498/wjp.v12.i3.53635433322
    [Google Scholar]
  7. ChandekarK.R. SatapathyS. SinghH. BhattacharyaA. Molecular imaging as a tool for evaluation of COVID-19 sequelae – A review of literature.World J. Radiol.202214719420810.4329/wjr.v14.i7.19436160629
    [Google Scholar]
  8. JinY.H. CaiL. ChengZ.S. ChengH. DengT. FanY.P. FangC. HuangD. HuangL.Q. HuangQ. HanY. HuB. HuF. LiB.H. LiY.R. LiangK. LinL.K. LuoL.S. MaJ. MaL.L. PengZ.Y. PanY.B. PanZ.Y. RenX.Q. SunH.M. WangY. WangY.Y. WengH. WeiC.J. WuD.F. XiaJ. XiongY. XuH.B. YaoX.M. YuanY.F. YeT.S. ZhangX.C. ZhangY.W. ZhangY.G. ZhangH.M. ZhaoY. ZhaoM.J. ZiH. ZengX.T. WangY.Y. WangX.H. for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM) A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version).Mil. Med. Res.202071410.1186/s40779‑020‑0233‑632029004
    [Google Scholar]
  9. BernheimA. MeiX. HuangM. YangY. FayadZ.A. ZhangN. DiaoK. LinB. ZhuX. LiK. LiS. ShanH. JacobiA. ChungM. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection.Radiology2020295320046310.1148/radiol.202020046332077789
    [Google Scholar]
  10. LiY. XiaL. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management.AJR Am. J. Roentgenol.202021461280128610.2214/AJR.20.2295432130038
    [Google Scholar]
  11. AiT. YangZ. HouH. ZhanC. ChenC. LvW. TaoQ. SunZ. XiaL. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases.Radiology20202962E32E4010.1148/radiol.202020064232101510
    [Google Scholar]
  12. FieldsB.K.K. DemirjianN.L. GholamrezanezhadA. Coronavirus disease 2019 (COVID-19) diagnostic technologies: A country-based retrospective analysis of screening and containment procedures during the first wave of the pandemic.Clin. Imaging20206721922510.1016/j.clinimag.2020.08.01432871426
    [Google Scholar]
  13. RubinG.D. RyersonC.J. HaramatiL.B. SverzellatiN. KanneJ.P. RaoofS. SchlugerN.W. VolpiA. YimJ.J. MartinI.B.K. AndersonD.J. KongC. AltesT. BushA. DesaiS.R. Goldin GooJ.M. HumbertM. InoueY. KauczorH.U. LuoF. MazzoneP.J. ProkopM. Remy-JardinM. RicheldiL. Schaefer-ProkopC.M. TomiyamaN. WellsA.U. LeungA.N. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the fleischner society.Radiology2020296117218010.1148/radiol.202020136532255413
    [Google Scholar]
  14. Rivera-SoteloN. Vargas-Del-AngelR.G. TernovoyS.K. Roldan-ValadezE. Global research trends in COVID-19 with MRI and PET/CT: A scoping review with bibliometric and network analyses.Clin. Transl. Imaging20219662563910.1007/s40336‑021‑00460‑x34414137
    [Google Scholar]
  15. HazarikaB.B. GuptaD. BerlinM. Modeling suspended sediment load in a river using extreme learning machine and twin support vector regression with wavelet conjunction.Environ. Earth Sci.2020791023410.1007/s12665‑020‑08949‑w
    [Google Scholar]
  16. DasS. AyusI. GuptaD. A comprehensive review of COVID-19 detection with machine learning and deep learning techniques.Health Technol.202313467969210.1007/s12553‑023‑00757‑z37363343
    [Google Scholar]
  17. KilnerP.J. GevaT. KaemmererH. TrindadeP.T. SchwitterJ. WebbG.D. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the european society of cardiology.Eur. Heart J.201031779480510.1093/eurheartj/ehp58620067914
    [Google Scholar]
  18. JaiswalV. SarfrazZ. SarfrazA. MukherjeeD. BatraN. HitawalaG. YaqoobS. PatelA. AgarwalaP. Ruchika SarfrazM. BanoS. AzeemN. NazS. JaiswalA. SharmaP. ChaudharyG. COVID-19 infection and myocarditis: A state-of-the-art systematic review.J. Prim. Care Community Health20211211910.1177/2150132721105680034854348
    [Google Scholar]
  19. FieldsB.K.K. DemirjianN.L. DadgarH. GholamrezanezhadA. Imaging of COVID-19: CT, MRI, and PET.Semin. Nucl. Med.202151431232010.1053/j.semnuclmed.2020.11.00333288215
    [Google Scholar]
  20. ZhouY. XuJ. HouY. LeverenzJ.B. KallianpurA. MehraR. LiuY. YuH. PieperA.A. JehiL. ChengF. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment.Alzheimers Res. Ther.202113111010.1186/s13195‑021‑00850‑334108016
    [Google Scholar]
  21. CoolenT. LolliV. SadeghiN. RovaiA. TrottaN. TacconeF.S. CreteurJ. HenrardS. GoffardJ.C. DewitteO. NaeijeG. GoldmanS. De TiègeX. Early postmortem brain MRI findings in COVID-19 non-survivors.Neurology20209514e2016e202710.1212/WNL.000000000001011632546654
    [Google Scholar]
  22. MaoL. JinH. WangM. HuY. ChenS. HeQ. ChangJ. HongC. ZhouY. WangD. MiaoX. LiY. HuB. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China.JAMA Neurol.202077668369010.1001/jamaneurol.2020.112732275288
    [Google Scholar]
  23. LiY.C. BaiW.Z. HashikawaT. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients.J. Med. Virol.202092655255510.1002/jmv.2572832104915
    [Google Scholar]
  24. MinersS. KehoeP.G. LoveS. Cognitive impact of COVID-19: Looking beyond the short term.Alzheimers Res. Ther.202012117010.1186/s13195‑020‑00744‑w33380345
    [Google Scholar]
  25. Romero-SánchezC.M. Díaz-MarotoI. Fernández-DíazE. Sánchez-LarsenÁ. Layos-RomeroA. García-GarcíaJ. GonzálezE. Redondo-PeñasI. Perona-MoratallaA.B. Del Valle-PérezJ.A. Gracia-GilJ. Rojas-BartoloméL. Feria-VilarI. MonteagudoM. PalaoM. Palazón-GarcíaE. Alcahut-RodríguezC. Sopelana-GarayD. MorenoY. AhmadJ. SeguraT. Neurologic manifestations in hospitalized patients with COVID-19.Neurology2020958e1060e107010.1212/WNL.000000000000993732482845
    [Google Scholar]
  26. MeppielE. Peiffer-SmadjaN. MauryA. BekriI. DelormeC. DesestretV. GorzaL. Hautecloque-RayszG. LandreS. LannuzelA. MoulinS. PerrinP. PetitgasP. SellaIF. WangA. TattevinP. de BrouckerT. AbgrallS. Alby-LaurentF. AllouT. AmevigbeJ. AmarguellayH. AlloussiN. BailleG. BarbazM. BekriI. BencherifL. BensaadiS. BeraudG. BizotA. BottinL. BruneelF. CamdessancheJ-P. ChauffierJ. CsajaghyJ-P. De BrouckerC. De BrouckerT. DefebvreL. DelormeC. DembloqueE. DeracheN. DereeperO. DerollezC. Descotes-GenonC. DesestretV. DevauxM. DubucL. EdanG. FicklA. FraisseT. GugenheimM. HankiewiczK. HansmannY. Hautecloque-RayszG. HenryC. JobardS. JouanF. KwiatkowskiA. LaluT. LandreS. LannuzelA. LeguillouxJ. LejeuneC. LiegeoisC. MahyS. MareyJ. MauryA. MeppielE. MichelL. MitriR. MoulinC. MoulinS. Peiffer-SmadjaN. OmarjeeA. OzsancakC. PerrinP. PetitgasP. PicoF. PoupardM. RabierV. RizzatoC. RoosC. SaisonJ. SayreN. SedillotN. SellalF. ServanJ. StoreyC. SuchetL. TarteretP. TattevinP. ThiebautM. VaduvaC. VarlanD. WangA. ZarroukV. contributors to the NeuroCOVID registry Neurologic manifestations associated with COVID-19: A multicentre registry.Clin. Microbiol. Infect.202127345846610.1016/j.cmi.2020.11.00533189873
    [Google Scholar]
  27. WangQ. DavisP.B. GurneyM.E. XuR. COVID‐19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US.Alzheimers Dement.20211781297130610.1002/alz.1229633559975
    [Google Scholar]
  28. BianchettiA. RozziniR. GueriniF. BoffelliS. RanieriP. MinelliG. BianchettiL. TrabucchiM. Clinical presentation of COVID19 in dementia patients.J. Nutr. Health Aging202024656056210.1007/s12603‑020‑1389‑132510106
    [Google Scholar]
  29. HelmsJ. KremerS. MerdjiH. Clere-JehlR. SchenckM. KummerlenC. CollangeO. BoulayC. Fafi-KremerS. OhanaM. AnheimM. MezianiF. Neurologic features in severe SARS-CoV-2 infection.N. Engl. J. Med.2020382232268227010.1056/NEJMc200859732294339
    [Google Scholar]
  30. LeeM.H. PerlD.P. NairG. LiW. MaricD. MurrayH. DoddS.J. KoretskyA.P. WattsJ.A. CheungV. MasliahE. Horkayne-SzakalyI. JonesR. StramM.N. MoncurJ. HeftiM. FolkerthR.D. NathA. Microvascular injury in the brains of patients with Covid-19.N. Engl. J. Med.2021384548148310.1056/NEJMc203336933378608
    [Google Scholar]
  31. XiongW. MuJ. GuoJ. LuL. LiuD. LuoJ. LiN. LiuJ. YangD. GaoH. ZhangY. LinM. ShenS. ZhangH. ChenL. WangG. LuoF. LiW. ChenS. HeL. SanderJ.W. ZhouD. New onset neurologic events in people with COVID-19 in 3 regions in China.Neurology20209511e1479e148710.1212/WNL.000000000001003432554771
    [Google Scholar]
  32. KanbergN. AshtonN.J. AnderssonL.M. YilmazA. LindhM. NilssonS. PriceR.W. BlennowK. ZetterbergH. GisslénM. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19.Neurology20209512e1754e175910.1212/WNL.000000000001011132546655
    [Google Scholar]
  33. WangD. HuB. HuC. ZhuF. LiuX. ZhangJ. WangB. XiangH. ChengZ. XiongY. ZhaoY. LiY. WangX. PengZ. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.158532031570
    [Google Scholar]
  34. ShiS. QinM. ShenB. CaiY. LiuT. YangF. GongW. LiuX. LiangJ. ZhaoQ. HuangH. YangB. HuangC. Association of cardiac injury with mortality in hospitalized patients With COVID-19 in Wuhan, China.JAMA Cardiol.20205780281010.1001/jamacardio.2020.095032211816
    [Google Scholar]
  35. GuoT. FanY. ChenM. WuX. ZhangL. HeT. WangH. WanJ. WangX. LuZ. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781181810.1001/jamacardio.2020.101732219356
    [Google Scholar]
  36. HalushkaM.K. Vander HeideR.S. Myocarditis is rare in COVID-19 autopsies: Cardiovascular findings across 277 postmortem examinations.Cardiovasc. Pathol.20215010730010.1016/j.carpath.2020.10730033132119
    [Google Scholar]
  37. PuntmannV.O. CarerjM.L. WietersI. FahimM. ArendtC. HoffmannJ. ShchendryginaA. EscherF. Vasa-NicoteraM. ZeiherA.M. VehreschildM. NagelE. Outcomes of Cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205111265127310.1001/jamacardio.2020.355732730619
    [Google Scholar]
  38. ArentzM. YimE. KlaffL. LokhandwalaS. RiedoF.X. ChongM. LeeM. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state.JAMA2020323161612161410.1001/jama.2020.432632191259
    [Google Scholar]
  39. SouthA.M. DizD.I. ChappellM.C. COVID-19, ACE2, and the cardiovascular consequences.Am. J. Physiol. Heart Circ. Physiol.20203185H1084H109010.1152/ajpheart.00217.202032228252
    [Google Scholar]
  40. PalR. BhansaliA. COVID-19, diabetes mellitus and ACE2: The conundrum.Diabetes Res. Clin. Pract.202016210813210.1016/j.diabres.2020.10813232234504
    [Google Scholar]
  41. ChenL. LiX. ChenM. FengY. XiongC. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2.Cardiovasc. Res.202011661097110010.1093/cvr/cvaa07832227090
    [Google Scholar]
  42. DewanN.A. NietoF.J. SomersV.K. Intermittent hypoxemia and OSA.Chest2015147126627410.1378/chest.14‑050025560865
    [Google Scholar]
  43. LibbyP. Inflammation and cardiovascular disease mechanisms.Am. J. Clin. Nutr.2006832456S460S10.1093/ajcn/83.2.456S16470012
    [Google Scholar]
  44. ChenD. LiX. SongQ. HuC. DaiJ. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19).Cold Spring Harbor Laboratory Press2020192410.1101/2020.02.27.20028530
    [Google Scholar]
  45. JainS. WorkmanV. GaneshanR. ObasareE.R. RosenfeldL.E. Enhanced ECG monitoring of COVID-19 patients.Heart Rhythm202017914172232387247
    [Google Scholar]
  46. Rodríguez-RodríguezI. RodríguezJ.V. ShirvanizadehN. OrtizA. Pardo-QuilesD.J. Applications of artificial intelligence, machine learning, big data and the internet of things to the COVID-19 pandemic: A scientometric review using text mining.Int. J. Environ. Res. Public Health20211816857810.3390/ijerph1816857834444327
    [Google Scholar]
  47. HassanH. RenZ. ZhaoH. HuangS. LiD. XiangS. KangY. ChenS. HuangB. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks.Comput. Biol. Med.202214110512310.1016/j.compbiomed.2021.10512334953356
    [Google Scholar]
  48. SwayamsiddhaS. PrashantK. ShawD. MohantyC. The prospective of artificial intelligence in COVID-19 pandemic.Health Technol.20211161311132010.1007/s12553‑021‑00601‑234603925
    [Google Scholar]
  49. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  50. ZhaoW. ZhongZ. XieX. YuQ. LiuJ. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) Pneumonia: A multicenter study.AJR Am. J. Roentgenol.202021451072107710.2214/AJR.20.2297632125873
    [Google Scholar]
  51. XieX. ZhongZ. ZhaoW. ZhengC. WangF. LiuJ. Chest CT for typical coronavirus disease 2019 (COVID-19) Pneumonia: Relationship to negative RT-PCR testing.Radiology20202962E41E4510.1148/radiol.202020034332049601
    [Google Scholar]
  52. LanL. XuD. YeG. XiaC. WangS. LiY. XuH. Positive RT-PCR test results in patients recovered from COVID-19.JAMA2020323151502150310.1001/jama.2020.278332105304
    [Google Scholar]
  53. ShiH. HanX. JiangN. CaoY. AlwalidO. GuJ. FanY. ZhengC. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study.Lancet Infect. Dis.202020442543410.1016/S1473‑3099(20)30086‑432105637
    [Google Scholar]
  54. KimH. Outbreak of novel coronavirus (COVID-19): What is the role of radiologists?Eur. Radiol.20203063266326710.1007/s00330‑020‑06748‑232072255
    [Google Scholar]
  55. XuX. YuC. QuJ. ZhangL. JiangS. HuangD. ChenB. ZhangZ. GuanW. LingZ. JiangR. HuT. DingY. LinL. GanQ. LuoL. TangX. LiuJ. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2.Eur. J. Nucl. Med. Mol. Imaging20204751275128010.1007/s00259‑020‑04735‑932107577
    [Google Scholar]
  56. PanF. YeT. SunP. GuiS. LiangB. LiL. ZhengD. WangJ. HeskethR.L. YangL. ZhengC. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19).Radiology2020295371572110.1148/radiol.202020037032053470
    [Google Scholar]
  57. HosseinyM. KoorakiS. GholamrezanezhadA. ReddyS. MyersL. Radiology perspective of coronavirus disease 2019 (COVID-19): Lessons from severe acute respiratory syndrome and middle east respiratory syndrome.AJR Am. J. Roentgenol.202021451078108210.2214/AJR.20.2296932108495
    [Google Scholar]
  58. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  59. ChungM. BernheimA. MeiX. ZhangN. HuangM. ZengX. CuiJ. XuW. YangY. FayadZ.A. JacobiA. LiK. LiS. ShanH. CT imaging features of 2019 novel coronavirus (2019-nCoV).Radiology2020295120220710.1148/radiol.202020023032017661
    [Google Scholar]
  60. TanG. LianX. ZhuZ. WangZ. HuangF. ZhangY. ZhaoY. HeS. WangX. ShenH. LyuG. Use of lung ultrasound to differentiate coronavirus disease 2019 (COVID-19) Pneumonia from community-acquired pneumonia.Ultrasound Med. Biol.202046102651265810.1016/j.ultrasmedbio.2020.05.00632622684
    [Google Scholar]
  61. TorkianP. RajebiH. ZamaniT. RamezaniN. KianiP. AkhlaghpoorS. Magnetic resonance imaging features of coronavirus disease 2019 (COVID-19) pneumonia: The first preliminary case series.Clin. Imaging20216926126510.1016/j.clinimag.2020.09.00233002753
    [Google Scholar]
  62. AtesO.F. TaydasO. DheirH. Thorax magnetic resonance imaging findings in patients with coronavirus disease (COVID-19).Acad. Radiol.202027101373137810.1016/j.acra.2020.08.00932830031
    [Google Scholar]
  63. OhnoY. KoyamaH. YoshikawaT. SekiS. TakenakaD. YuiM. LuA. MiyazakiM. SugimuraK. Pulmonary high‐resolution ultrashort TE MR imaging: Comparison with thin‐section standard‐ and low‐dose computed tomography for the assessment of pulmonary parenchyma diseases.J. Magn. Reson. Imaging201643251253210.1002/jmri.2500826223818
    [Google Scholar]
  64. SyrjalaH. BroasM. OhtonenP. JarttiA. PääkköE. Chest magnetic resonance imaging for pneumonia diagnosis in outpatients with lower respiratory tract infection.Eur. Respir. J.2017491160130310.1183/13993003.01303‑201627811069
    [Google Scholar]
  65. LeutnerC.C. GiesekeJ. LutterbeyG. KuhlC.K. GlasmacherA. WardelmannE. TheisenA. SchildH.H. MR imaging of pneumonia in immunocompromised patients: comparison with helical CT.AJR Am. J. Roentgenol.2000175239139710.2214/ajr.175.2.175039110915681
    [Google Scholar]
  66. HoangA. ChorathK. MoreiraA. EvansM. Burmeister-MortonF. BurmeisterF. NaqviR. PetershackM. MoreiraA. COVID-19 in 7780 pediatric patients: A systematic review.EClinicalMedicine20202410043310.1016/j.eclinm.2020.10043332766542
    [Google Scholar]
  67. SunD. LiH. LuX.X. XiaoH. RenJ. ZhangF.R. LiuZ.S. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study.World J. Pediatr.202016325125910.1007/s12519‑020‑00354‑432193831
    [Google Scholar]
  68. Guner OzenenG. Akaslan KaraA. KiymetE. BoncuogluE. SahinkayaS. CemE. Yilmaz CelebiM. KacarP. GulderenM. UrasM. YılmazerM.M. MuratM. MeseT. AginH. BayramN. Devrimİ. The evaluation of troponin I levels and myocarditis in children with COVID-19: A pediatric single-center experience.Pediatr. Cardiol.202344487388110.1007/s00246‑022‑03017‑536210385
    [Google Scholar]
  69. Ashkenazi-HoffnungL. ShmueliE. EhrlichS. ZivA. Bar-OnO. BirkE. LowenthalA. PraisD. Long COVID in children.Pediatr. Infect. Dis. J.20214012e509e51110.1097/INF.000000000000328534371507
    [Google Scholar]
  70. RogeI. SmaneL. Kivite-UrtaneA. PucukaZ. RackoI. KlavinaL. PavareJ. Comparison of persistent symptoms after COVID-19 and other Non-SARS-CoV-2 infections in children.Front Pediatr.2021975238510.3389/fped.2021.75238534778143
    [Google Scholar]
  71. NiW. YangX. YangD. BaoJ. LiR. XiaoY. HouC. WangH. LiuJ. YangD. XuY. CaoZ. GaoZ. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19.Crit. Care202024142210.1186/s13054‑020‑03120‑032660650
    [Google Scholar]
  72. CagnazzoF. ArquizanC. DerrazI. DargazanliC. LefevreP.H. RiquelmeC. GaillardN. MourandI. GascouG. BonafeA. CostalatV. Neurological manifestations of patients infected with the SARS-CoV-2: A systematic review of the literature.J. Neurol.202126882656266510.1007/s00415‑020‑10285‑933125542
    [Google Scholar]
  73. LaRovereK.L. RiggsB.J. PoussaintT.Y. YoungC.C. NewhamsM.M. MaamariM. WalkerT.C. SinghA.R. DapulH. HobbsC.V. McLaughlinG.E. SonM.B.F. MadduxA.B. ClouserK.N. RowanC.M. McGuireJ.K. FitzgeraldJ.C. GertzS.J. SheinS.L. MunozA.C. ThomasN.J. IrbyK. LevyE.R. StaatM.A. TenfordeM.W. FeldsteinL.R. HalasaN.B. GiulianoJ.S.Jr HallM.W. KongM. CarrollC.L. SchusterJ.E. DoymazS. LoftisL.L. TarquinioK.M. BabbittC.J. NofzigerR.A. KleinmanL.C. KeenaghanM.A. CvijanovichN.Z. SpinellaP.C. HumeJ.R. WellnitzK. MackE.H. MichelsonK.N. FloriH.R. PatelM.M. RandolphA.G. Last NameF.N.M.I. GaspersM.G. TyppoK.V. SandersR.C. SchwarzA.J. HarveyH. ZinterM.S. MouraniP.M. CoatesB.M. BhoojhawonG. HavlinK.M. MontgomeryV.L. SullivanJ.E. BradfordT.T. BembeaM.M. LiptonS.V. GracianoA.L. ChenS.R. KucukakS. NewburgerJ.W. CarrollR.W. FernandesN.D. YagerP.H. MarohnK.L. HeidemannS.M. CullimoreM.L. McCullohR.J. HorwitzS.M. LiS. WalshR.F. RatnerA.J. SomaV.L. GillenJ.K. ZackaiS.P. AckermanK.G. CholetteJ.M. Harwayne-GidanskyI. HymesS.R. OverbyP.J. SchwartzS.P. LansellA.N. KoncickiM.L. CarcilloJ. FinkE. KimuraD. BowensC. CrandallH. SmithL.S. CengizP. Neurologic involvement in children and adolescents hospitalized in the united states for COVID-19 or multisystem inflammatory syndrome.JAMA Neurol.202178553654710.1001/jamaneurol.2021.050433666649
    [Google Scholar]
  74. SandovalF. JulioK. MéndezG. ValderasC. EcheverríaA.C. PerinettiM.J. SuarezN.M. BarrazaG. PiñeraC. AlarcónM. SamaniegoF. Quesada-RiosP. RoblesC. IzquierdoG. Neurologic features associated with SARS-CoV-2 infection in children: A case series report.J. Child Neurol.2021361085386610.1177/088307382198916433646895
    [Google Scholar]
  75. RayS.T.J. Abdel-MannanO. SaM. FullerC. WoodG.K. PysdenK. YoongM. McCullaghH. ScottD. McMahonM. ThomasN. TaylorM. IllingworthM. McCreaN. DaviesV. WhitehouseW. ZuberiS. GuthrieK. WassmerE. ShahN. BakerM.R. TiwaryS. TanH.J. VarmaU. RamD. AvulaS. EnrightN. HassellJ. Ross RussellA.L. KumarR. MulhollandR.E. PettS. GaleaI. ThomasR.H. BenjaminL.A. LimM. HacohenY. SolomonT. GriffithsM.J. MichaelB.D. KneenR. BreenG. CastellH. CollieC. GeorgeL. HartmannM. HenrionM. KinaliM. PetropoulosC. RamdasS. VlachouV. VollmerB. FacerB. DunaiC. BenjaminL. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: A prospective national cohort study.Lancet Child Adolesc. Health20215963164110.1016/S2352‑4642(21)00193‑034273304
    [Google Scholar]
  76. OlivottoS. BassoE. LavatelliR. PrevitaliR. ParentiL. FioriL. DililloD. ZuccottiG.V. VeggiottiP. BovaS.M. Acute encephalitis in pediatric multisystem inflammatory syndrome associated with COVID-19.Eur. J. Paediatr. Neurol.202134849010.1016/j.ejpn.2021.07.01034425479
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056274864231227071026
Loading
/content/journals/cmir/10.2174/0115734056274864231227071026
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Bibliometric analysis; CiteSpace; COVID-19; Knowledge graph; MRI; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test