Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Objective

The accurate diagnosis of superficial lymphadenopathy is challenging. We aim to explore a non-invasive and accurate machine-learning method for distinguishing benign lymph nodes, lymphoma, and metastatic lymph nodes.

Methods

The clinical data and ultrasound images of 160 patients with superficial lymphadenopathy (58 benign lymph nodes, 62 lymphoma, 40 metastatic lymph nodes) admitted to our hospital from January 2020 to November 2022 were retrospectively studied. Patients were randomly divided into a training set and test set according to the ratio of 6:4. Firstly, the radiomics features of each lymph node were extracted, and then a series of statistical methods were used to avoid over-fitting. Then, the gradient boosting machine(GBM) was used to build the model. The area under receiver(AUC) operating characteristic curve, precision, recall rate and F1 value were calculated to evaluate the effectiveness of the model.

Results

Ten robust features were selected to build the model. The AUC values of benign lymph nodes, lymphoma and metastatic lymph nodes in the training set were 1.00, 0.98 and 0.99, and the AUC values of the test set were 0.96, 0.84 and 0.90, respectively.

Conclusion

It was a reliable and non-invasive method for the differential diagnosis of lymphadenopathy based on the model constructed by machine learning.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056272324231115103747
2024-01-01
2025-09-11
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056272324.html?itemId=/content/journals/cmir/10.2174/0115734056272324231115103747&mimeType=html&fmt=ahah

References

  1. Islam SheikhN. BabarM. ZahoorA. IdreesZ. NaseemS. FatimaS. The pattern of superficial lymphadenopathy on fine needle aspiration cytology in clinical practice in Islamabad.Cureus2021138e1707510.7759/cureus.1707534522552
    [Google Scholar]
  2. MoeckelmannN. EbrahimiA. TouY.K. Prognostic implications of the 8th edition american joint committee on cancer (ajcc) staging system in oral cavity squamous cell carcinoma.Oral Oncol2018858286
    [Google Scholar]
  3. GaddeyH.L. RiegelA.M. Unexplained lymphadenopathy: Evaluation and differential diagnosis.Am. Fam. Physician2016941189690327929264
    [Google Scholar]
  4. JayapalN. RamS.M. MurthyV. BasheerS. ShamsuddinS. KhanA. Differentiation between benign and metastatic cervical lymph nodes using ultrasound.J. Pharm. Bioallied Sci.2019116Suppl. 233810.4103/JPBS.JPBS_26_1931198366
    [Google Scholar]
  5. SuhC.H. BaekJ.H. ChoiY.J. LeeJ.H. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: A systematic review and meta-analysis.AJNR Am. J. Neuroradiol.201738115416110.3174/ajnr.A496727789450
    [Google Scholar]
  6. MaX. LingW. XiaF. ZhangY. ZhuC. HeJ. Application of contrast-enhanced ultrasound (ceus) in lymphomatous lymph nodes: A comparison between pet/ct and contrast-enhanced ct.Contrast Media Mol. Imaging201920191710.1155/2019/570969830809108
    [Google Scholar]
  7. de BondtB.J. StokroosR. CasselmanJ.W. van EngelshovenJ.M.A. Beets-TanR.G.H. KesselsF.G.H. Clinical impact of short tau inversion recovery MRI on staging and management in patients with cervical lymph node metastases of head and neck squamous cell carcinomas.Head Neck200931792893710.1002/hed.2106019260129
    [Google Scholar]
  8. BiałekE.J. JakubowskiW. Mistakes in ultrasound diagnosis of superficial lymph nodes.J. Ultrason.20171768596528439430
    [Google Scholar]
  9. GroneckL. QuaasA. HallekM. ZanderT. WeihrauchM.R. Ultrasound‐guided core needle biopsies for workup of lymphadenopathy and lymphoma.Eur. J. Haematol.201697437938610.1111/ejh.1274226833691
    [Google Scholar]
  10. LubnerM.G. SmithA.D. SandrasegaranK. SahaniD.V. PickhardtP.J. CT texture analysis: Definitions, applications, biologic correlates, and challenges.Radiographics20173751483150310.1148/rg.201717005628898189
    [Google Scholar]
  11. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  12. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  13. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  14. KunoH. GargN. QureshiM.M. ChapmanM.N. LiB. MeibomS.K. TruongM.T. TakumiK. SakaiO. CT texture analysis of cervical lymph nodes on contrast-enhanced [18f] fdg-pet/ct images to differentiate nodal metastases from reactive lymphadenopathy in hiv-positive patients with head and neck squamous cell carcinoma.AJNR Am. J. Neuroradiol.201940354355010.3174/ajnr.A597430792253
    [Google Scholar]
  15. GuoX. LiuZ. SunC. ZhangL. WangY. LiZ. ShiJ. WuT. CuiH. ZhangJ. TianJ. TianJ. Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer.EBioMedicine20206010301810.1016/j.ebiom.2020.10301832980697
    [Google Scholar]
  16. CuiQ. YinS. FanZ.H. YangW. WangS. YanK. Diagnostic value of contrast‐enhanced ultrasonography and time‐intensity curve in differential diagnosis of cervical metastatic and tuberculous lymph nodes.J. Ultrasound Med.2018371839210.1002/jum.1431128691324
    [Google Scholar]
  17. ZwanenburgA. VallièresM. AbdalahM.A. AertsH.J.W.L. AndrearczykV. ApteA. AshrafiniaS. BakasS. BeukingaR.J. BoellaardR. BogowiczM. BoldriniL. BuvatI. CookG.J.R. DavatzikosC. DepeursingeA. DesseroitM.C. DinapoliN. DinhC.V. EchegarayS. El NaqaI. FedorovA.Y. GattaR. GilliesR.J. GohV. GötzM. GuckenbergerM. HaS.M. HattM. IsenseeF. LambinP. LegerS. LeijenaarR.T.H. LenkowiczJ. LippertF. LosnegårdA. Maier-HeinK.H. MorinO. MüllerH. NapelS. NiocheC. OrlhacF. PatiS. PfaehlerE.A.G. RahmimA. RaoA.U.K. SchererJ. SiddiqueM.M. SijtsemaN.M. Socarras FernandezJ. SpeziE. SteenbakkersR.J.H.M. Tanadini-LangS. ThorwarthD. TroostE.G.C. UpadhayaT. ValentiniV. van DijkL.V. van GriethuysenJ. van VeldenF.H.P. WhybraP. RichterC. LöckS. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping.Radiology2020295232833810.1148/radiol.202019114532154773
    [Google Scholar]
  18. HabermannT.M. SteensmaD.P. Lymphadenopathy.Mayo Clin. Proc.200075772373210.1016/S0025‑6196(11)64620‑X10907389
    [Google Scholar]
  19. ZelenetzA.D. GordonL.I. ChangJ.E. ChristianB. AbramsonJ.S. AdvaniR.H. BartlettN.L. BuddeL.E. CaimiP.F. De VosS. DholariaB. FakhriB. FayadL.E. GlennM.J. HabermannT.M. Hernandez-IlizaliturriF. HsiE. HuB. KaminskiM.S. KelseyC.R. KhanN. KrivacicS. LaCasceA.S. LimM. NarkhedeM. RabinovitchR. RamakrishnanP. ReidE. RobertsK.B. SaeedH. SmithS.D. SvobodaJ. SwinnenL.J. TuscanoJ. VoseJ.M. DwyerM.A. SundarH. NCCN guidelines® insights: B-cell lymphomas, version 5.2021.J. Natl. Compr. Canc. Netw.202119111218123010.6004/jnccn.2021.005434781267
    [Google Scholar]
  20. SantM. AllemaniC. BerrinoF. ColemanM.P. AareleidT. ChaplainG. CoeberghJ.W. ColonnaM. CrosignaniP. DanzonA. FedericoM. GafàL. GrosclaudeP. HédelinG. Macè-LesechJ. GarciaC.M. MøllerH. PaciE. RaverdyN. TretarreB. WilliamsE.M.I. Breast carcinoma survival in Europe and the United States.Cancer2004100471572210.1002/cncr.2003814770426
    [Google Scholar]
  21. LeeC. JeongS. JangC. BaeH. KimY.H. ParkI. KimS.K. KohG.Y. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation.Science2019363642764464910.1126/science.aav017330733421
    [Google Scholar]
  22. XuZ. HuangP. Prediction model of cervical lymphoma based on gray scale ultrasound imaging.Chinese J Ultrasound Imag2021306506512
    [Google Scholar]
  23. ZhangY. YuS. ZhangL. KangL. Radiomics based on cect in differentiating kimura disease from lymph node metastases in head and neck: A non-invasive and reliable method.Front. Oncol.202010112110.3389/fonc.2020.0112132850321
    [Google Scholar]
  24. ShiJ. JiangJ. ChangW. ChenM. ZhangQ. [Multi-class discrimination of lymphadenopathy by using dual-modal ultrasound radiomics with elastography and B-mode ultrasound].J. Biomed. Eng.201936695796331875369
    [Google Scholar]
  25. ChoiR.Y. CoynerA.S. Kalpathy-CramerJ. ChiangM.F. CampbellJ.P. Introduction to machine learning, neural networks, and deep learning.Transl. Vis. Sci. Technol.202092142532704420
    [Google Scholar]
  26. HasanZiaul R. MohammadHassan JishkarianiMaka Machine learning and data mining methods for cyber security: A survey.Mesopotamian journal of Cybersecurity.202220224756
    [Google Scholar]
  27. LiK. YaoS. ZhangZ. CaoB. WilsonC.M. KalosD. KuanP.F. ZhuR. WangX. Efficient gradient boosting for prognostic biomarker discovery.Bioinformatics20223861631163810.1093/bioinformatics/btab86934978570
    [Google Scholar]
  28. SalmanS.A. DheyabS.A. SalihQ.M. Parallel machine learning algorithms.202320231215
    [Google Scholar]
  29. RawiR. MallR. KunjiK. ShenC.H. KwongP.D. ChuangG.Y. PaRSnIP: Sequence-based protein solubility prediction using gradient boosting machine.Bioinformatics20183471092109810.1093/bioinformatics/btx66229069295
    [Google Scholar]
  30. ZhangZ. ZhaoY. CanesA. SteinbergD. LyashevskaO. Predictive analytics with gradient boosting in clinical medicine.Ann. Transl. Med.20197715210.21037/atm.2019.03.2931157273
    [Google Scholar]
  31. AsadikiaA. RajabifardA. KalantariM. Region-income-based prioritisation of sustainable development goals by gradient boosting machine.Sustain. Sci.20221751939195710.1007/s11625‑022‑01120‑335282641
    [Google Scholar]
  32. HolmC.E. GrazalC.F. RaedkjaerM. Baad-HansenT. NandraR. GrimerR. ForsbergJ.A. PetersenM.M. Skovlund SoerensenM. Development and comparison of 1-year survival models in patients with primary bone sarcomas: External validation of a Bayesian belief network model and creation and external validation of a new gradient boosting machine model.SAGE Open Med.20221010.1177/2050312122107638735154743
    [Google Scholar]
  33. RossiF. BignottiB. BianchiL. PicassoR. MartinoliC. TagliaficoA.S. Radiomics of peripheral nerves MRI in mild carpal and cubital tunnel syndrome.Radiol. Med.2020125219720310.1007/s11547‑019‑01110‑z31773457
    [Google Scholar]
  34. FaeghiF. ArdakaniA.A. AcharyaU.R. Mirza-Aghazadeh-AttariM. AbolghasemiJ. EjtehadifarS. MohammadiA. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: A comparison with radiologists’ assessment.Eur. J. Radiol.202113610951810.1016/j.ejrad.2020.10951833434859
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056272324231115103747
Loading
/content/journals/cmir/10.2174/0115734056272324231115103747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test