Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

The fat attenuation index (FAI) of pericoronary adipose tissue is associated with coronary inflammatory reactions.

Objective

This study aimed to analyze the difference in the FAI ratio between pericoronary adipose tissue volume and aortic root epicardial adipose tissue volume (AO-EATV) using computed tomography (CT) in various plaques.

Methods

In total, 645 coronary artery CT angiogram images from 215 patients were collected. The types and number of coronary plaques were recorded, and the plaque volume and pericoronary FAI of each branch were compared between the groups. The ratio of the FAI in branches with or without plaques to the AO-EATV was determined and statistically analyzed between the groups.

Results

No significant difference in the plaque volume among the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) ( > 0.05) as well as in the FAI was observed among various plaque groups ( > 0.05). FAI[LAD]/AO-EATV was in the following order: noncalcified plaques (0.70 ± 0.06) < mixed plaques (0.72 ± 0.06) < calcified plaques (0.73 ± 0.08) < no plaques (0.74 ± 0.07); FAI[LCX]/AO-EATV was in the following order: noncalcified plaques (0.71 ± 0.06) < mixed plaques (0.72 ± 0.08) < calcified plaques (0.73 ± 0.09) < no plaques (0.74 ± 0.06); and FAI[RCA]/AO-EATV was in the following order: noncalcified plaques (0.71 ± 0.06) < mixed plaques (0.73 ± 0.07) < calcified plaques (0.74 ± 0.07) < no plaques (0.75 ± 0.09); the differences were statistically significant in each group ( = 0.041, 0.043, and 0.028, respectively).

Conclusion

Compared to simply comparing FAI, FAI/AO-EATV varied in the coronary arteries in various plaque groups. FAI/AO-EATV was lower in noncalcified or mixed plaques and was associated with coronary inflammatory reactions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056264891231023054902
2024-01-01
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056264891.html?itemId=/content/journals/cmir/10.2174/0115734056264891231023054902&mimeType=html&fmt=ahah

References

  1. DweckM.R. Maurovich-HorvatP. LeinerT. CosynsB. FayadZ.A. GijsenF.J.H. Van der HeidenK. KooiM.E. MaeharaA. MullerJ.E. NewbyD.E. NarulaJ. PontoneG. RegarE. SerruysP.W. van der SteenA.F.W. StoneP.H. WaltenbergerJ.L. YuanC. EvansP.C. LutgensE. WentzelJ.J. BäckM. Contemporary rationale for non-invasive imaging of adverse coronary plaque features to identify the vulnerable patient: A position paper from the european society of cardiology working group on atherosclerosis and vascular biology and the european association of cardiovascular imaging.Eur. Heart J. Cardiovasc. Imaging202021111177118310.1093/ehjci/jeaa20132887997
    [Google Scholar]
  2. YangS. KooB.K. HoshinoM. LeeJ.M. MuraiT. ParkJ. ZhangJ. HwangD. ShinE.S. DohJ.H. NamC.W. WangJ. ChenS. TanakaN. MatsuoH. AkasakaT. ChoiG. PetersenK. ChangH.J. KakutaT. NarulaJ. CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning.JACC Cardiovasc. Imaging202114362964110.1016/j.jcmg.2020.08.02533248965
    [Google Scholar]
  3. AntonopoulosA.S. AngelopoulosA. TsioufisK. AntoniadesC. TousoulisD. Cardiovascular risk stratification by coronary computed tomography angiography imaging: Current state-of-the-art.Eur. J. Prev. Cardiol.202229460862410.1093/eurjpc/zwab06733930129
    [Google Scholar]
  4. KrollL. NassensteinK. JochimsM. KoitkaS. NensaF. Assessing the role of pericardial fat as a biomarker connected to coronary calcification––A deep learning based approach using fully automated body composition analysis.J. Clin. Med.202110235610.3390/jcm1002035633477874
    [Google Scholar]
  5. YangD.H. KangS.J. KooH.J. ChangM. KangJ.W. LimT.H. BaekS. HanS. LeeP.H. RohJ.H. AhnJ.M. ParkD.W. LeeS.W. LeeC.W. ParkS.W. ParkS.J. MintzG.S. KimY.H. Coronary CT angiography characteristics of OCT-defined thin-cap fibroatheroma: A section-to-section comparison study.Eur. Radiol.201828283384310.1007/s00330‑017‑4992‑828836052
    [Google Scholar]
  6. YuM. LiW. LuZ. WeiM. YanJ. ZhangJ. Quantitative baseline CT plaque characterization of unrevascularized non-culprit intermediate coronary stenosis predicts lesion volume progression and long-term prognosis: A serial CT follow-up study.Int. J. Cardiol.201826418118610.1016/j.ijcard.2018.03.02129548539
    [Google Scholar]
  7. YuM. DaiX. DengJ. LuZ. ShenC. ZhangJ. Diagnostic performance of perivascular fat attenuation index to predict hemodynamic significance of coronary stenosis: A preliminary coronary computed tomography angiography study.Eur. Radiol.202030267368110.1007/s00330‑019‑06400‑831444596
    [Google Scholar]
  8. KlünerL.V. OikonomouE.K. AntoniadesC. Assessing cardiovascular risk by using the fat attenuation index in coronary CT angiography.Radiol. Cardiothorac. Imaging202131e20056310.1148/ryct.202120056333778665
    [Google Scholar]
  9. ShanD. WangG. WangX. DingY. ChenY. ChenJ. [Value of maximum area stenosis combined with perivascular fat attenuation index in predicting hemodynamically significant coronary artery disease].Nan Fang Yi Ke Da Xue Xue Bao202141798899434308847
    [Google Scholar]
  10. YinP. DouG. YangX. WangX. ShanD. HeB. JingJ. JinQ. ChenY. YangJ. Noninvasive quantitative plaque analysis identifies hemodynamically significant coronary arteries disease.J. Thorac. Imaging202136210210710.1097/RTI.000000000000049432168164
    [Google Scholar]
  11. BauerR.W. ThiloC. ChiaramidaS.A. VoglT.J. CostelloP. SchoepfU.J. Noncalcified atherosclerotic plaque burden at coronary CT angiography: A better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity.AJR Am. J. Roentgenol.2009193241041810.2214/AJR.08.127719620437
    [Google Scholar]
  12. UsuiE. MatsumuraM. MintzG.S. ZhouZ. HadaM. YamaguchiM. HoshinoM. KanajiY. SugiyamaT. MuraiT. LeeT. YonetsuT. KakutaT. KunioM. TearneyG.J. MaeharaA. Clinical outcomes of low-intensity area without attenuation and cholesterol crystals in non-culprit lesions assessed by optical coherence tomography.Atherosclerosis2021332414710.1016/j.atherosclerosis.2021.08.00334384955
    [Google Scholar]
  13. ZhengZ. WangB. LvX. YaoF. GaoH. JinZ. LiuY. DengY. ChenD. NingX. WangW. HeJ. LinR. Protective effect of SIRT6 on cholesterol crystal-induced endothelial dysfunction via regulating ACE2 expression.Exp. Cell Res.2021402111252610.1016/j.yexcr.2021.11252633631165
    [Google Scholar]
  14. AbelaG.S. KalavakuntaJ.K. JanoudiA. LefflerD. DharG. SalehiN. CohnJ. ShahI. KarveM. KotaruV.P.K. GuptaV. DavidS. NarisettyK.K. RichM. VanderbergA. PathakD.R. ShamounF.E. Frequency of cholesterol crystals in culprit coronary artery aspirate during acute myocardial infarction and their relation to inflammation and myocardial injury.Am. J. Cardiol.2017120101699170710.1016/j.amjcard.2017.07.07528867129
    [Google Scholar]
  15. DaiX. YuL. LuZ. ShenC. TaoX. ZhangJ. Serial change of perivascular fat attenuation index after statin treatment: Insights from a coronary CT angiography follow-up study.Int. J. Cardiol.202031914414910.1016/j.ijcard.2020.06.00832553595
    [Google Scholar]
  16. TaoQ. WangS. XuF. ChenM. ZhaX.Y. ChenC. HuS. ZhangL.Y. ShenH.L. HuC.H. [Feasibility on the diagnosis of non-calcified plaque based on radiomics of pericoronary adipose tissue on plain CT scan image].Zhonghua Yi Xue Za Zhi2021101745846333631888
    [Google Scholar]
  17. MahmoudI. DykunI. KärnerL. HendricksS. TotzeckM. Al-RashidF. RassafT. MahabadiA.A. Epicardial adipose tissue differentiates in patients with and without coronary microvascular dysfunction.Int. J. Obes.20214592058206310.1038/s41366‑021‑00875‑634172829
    [Google Scholar]
  18. OikonomouE.K. MarwanM. DesaiM.Y. MancioJ. AlashiA. Hutt CentenoE. ThomasS. HerdmanL. KotanidisC.P. ThomasK.E. GriffinB.P. FlammS.D. AntonopoulosA.S. ShirodariaC. SabharwalN. DeanfieldJ. NeubauerS. HopewellJ.C. ChannonK.M. AchenbachS. AntoniadesC. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data.Lancet20183921015192993910.1016/S0140‑6736(18)31114‑030170852
    [Google Scholar]
  19. MaR. van AssenM. TiesD. PelgrimG.J. van DijkR. SidorenkovG. van OoijenP.M.A. van der HarstP. VliegenthartR. Focal pericoronary adipose tissue attenuation is related to plaque presence, plaque type, and stenosis severity in coronary CTA.Eur. Radiol.202131107251726110.1007/s00330‑021‑07882‑133860371
    [Google Scholar]
  20. BengsS. HaiderA. WarnockG.I. FiechterM. PargaetziY. RampidisG. EtterD. WijnenW.J. PortmannA. OstoE. TreyerV. BenzD.C. MeiselA. FuchsT.A. GräniC. BuechelR.R. KaufmannP.A. PazhenkottilA.P. GebhardC. Quantification of perivascular inflammation does not provide incremental prognostic value over myocardial perfusion imaging and calcium scoring.Eur. J. Nucl. Med. Mol. Imaging20214861806181210.1007/s00259‑020‑05106‑033200300
    [Google Scholar]
  21. HoshinoM. YangS. SugiyamaT. ZhangJ. KanajiY. HamayaR. YamaguchiM. HadaM. HorieT. NogamiK. UenoH. MisawaT. YonetsuT. HwangD. LeeJ.M. ShinE.S. DohJ.H. NamC.W. KooB.K. SasanoT. KakutaT. Characteristic findings of microvascular dysfunction on coronary computed tomography angiography in patients with intermediate coronary stenosis.Eur. Radiol.202131129198921010.1007/s00330‑021‑07909‑734009414
    [Google Scholar]
  22. KenchaiahS. DingJ. CarrJ.J. AllisonM.A. BudoffM.J. TracyR.P. BurkeG.L. McClellandR.L. AraiA.E. BluemkeD.A. Pericardial fat and the risk of heart failure.J. Am. Coll. Cardiol.202177212638265210.1016/j.jacc.2021.04.00334045020
    [Google Scholar]
  23. NafakhiH. Al-MosawiA.A. al-ButhabhakK. Sex-related differences in the association of BMI and pericardial fat volume with coronary atherosclerotic markers in young.Angiology202172328528910.1177/000331972097423733207916
    [Google Scholar]
  24. NafakhiH. Al-MosawiA.A. Al esawiR.W. Pericardial adiposity versus body adiposity measured by BMI in the assessment of coronary atherosclerosis burden in patients with hypertension.Clin. Exp. Hypertens.2021431131710.1080/10641963.2020.179058732643430
    [Google Scholar]
  25. YuanM. WuH. LiR. YuL. ZhangJ. Epicardial adipose tissue characteristics and CT high-risk plaque features: Correlation with coronary thin-cap fibroatheroma determined by intravascular ultrasound.Int. J. Cardiovasc. Imaging202036112281228910.1007/s10554‑020‑01917‑232535842
    [Google Scholar]
  26. HeX. GuoB.J. LeiY. WangT. CurranW.J. LiuT. ZhangL.J. YangX. Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: A multicenter study.Eur. Radiol.20213163826383610.1007/s00330‑020‑07482‑533206226
    [Google Scholar]
  27. LiX. SunY. XuL. GreenwaldS.E. ZhangL. ZhangR. YouH. YangB. Automatic quantification of epicardial adipose tissue volume.Med. Phys.20214884279429010.1002/mp.1501234062000
    [Google Scholar]
  28. OikonomouE.K. WilliamsM.C. KotanidisC.P. DesaiM.Y. MarwanM. AntonopoulosA.S. ThomasK.E. ThomasS. AkoumianakisI. FanL.M. KesavanS. HerdmanL. AlashiA. CentenoE.H. LyashevaM. GriffinB.P. FlammS.D. ShirodariaC. SabharwalN. KelionA. DweckM.R. Van BeekE.J.R. DeanfieldJ. HopewellJ.C. NeubauerS. ChannonK.M. AchenbachS. NewbyD.E. AntoniadesC. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography.Eur. Heart J.201940433529354310.1093/eurheartj/ehz59231504423
    [Google Scholar]
  29. DaiX. DengJ. YuM. LuZ. ShenC. ZhangJ. Perivascular fat attenuation index and high-risk plaque features evaluated by coronary CT angiography: Relationship with serum inflammatory marker level.Int. J. Cardiovasc. Imaging202036472373010.1007/s10554‑019‑01758‑831907683
    [Google Scholar]
  30. HoshinoM. ZhangJ. SugiyamaT. YangS. KanajiY. HamayaR. YamaguchiM. HadaM. MisawaT. UsuiE. MuraiT. YonetsuT. LeeJ.M. KooB.K. SasanoT. KakutaT. Prognostic value of pericoronary inflammation and unsupervised machine-learning-defined phenotypic clustering of CT angiographic findings.Int. J. Cardiol.202133322623210.1016/j.ijcard.2021.03.01933741428
    [Google Scholar]
  31. GoellerM. AchenbachS. DunckerH. DeyD. MarwanM. Imaging of the pericoronary adipose tissue (PCAT) using cardiac computed tomography: Modern clinical implications.J. Thorac. Imaging202136314916110.1097/RTI.000000000000058333875629
    [Google Scholar]
  32. LuoG. QianY. ShengX. SunJ. WuZ. LiaoF. FengQ. YinY. DingS. PuJ. Elevated serum levels of soluble ST2 are associated with plaque vulnerability in patients with non-ST-elevation acute coronary syndrome.Front. Cardiovasc. Med.2021868852210.3389/fcvm.2021.68852234368249
    [Google Scholar]
  33. SenooA. KitagawaT. TorimakiS. YamamotoH. SentaniK. TakahashiS. KuboY. YasuiW. SuedaT. KiharaY. Association between histological features of epicardial adipose tissue and coronary plaque characteristics on computed tomography angiography.Heart Vessels201833882783610.1007/s00380‑018‑1129‑129387923
    [Google Scholar]
  34. ChenX. DangY. HuH. MaS. MaY. WangK. LiuT. LuX. HouY. Pericoronary adipose tissue attenuation assessed by dual-layer spectral detector computed tomography is a sensitive imaging marker of high-risk plaques.Quant. Imaging Med. Surg.20211152093210310.21037/qims‑20‑86033936990
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056264891231023054902
Loading
/content/journals/cmir/10.2174/0115734056264891231023054902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test