Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background:

Accurately predicting the hepatocellular carcinoma (HCC) grade may facilitate the rational selection of treatment strategies. The diagnostic efficacy of the combination of Gadolinium ethoxybenzy diethylenetriamine pentaacetic (Gd-EOB-DTPA) enhancement T1 mapping and apparent diffusion coefficient (ADC) values in predicting HCC grade needs further validation.

Objectives:

This study aimed to assess the capacity of Gd-EOB-DTPA-enhanced T1 mapping and ADC values, both individually and in combination, to discriminate between different grades of HCC.

Materials and Methods:

From July 2017 to February 2020, 96 patients (male, 83; mean age, 53.67 years; age range, 29-71 years) clinically diagnosed with HCC were included in the present study. All patients underwent Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI, including T1 mapping sequence) before surgery or biopsy. All the patients were categorized into 3 groups according to the pathological results (including 24 cases of well-differentiated HCCs, 59 cases of moderately differentiated HCCs, 13 cases of and poorly differentiated HCCs). The mean Gd-EOB-DTPA enhanced T1 values (∆T1=[(T1pre-T1post)/T1pre]×100%) and ADC values between different grading groups of HCC were calculated and compared. The area under the characteristics curve (AUC), the diagnostic threshold, sensitivity, and specificity of ΔT1 and ADC for differential diagnosis were analyzed.

Results:

Mean ∆T1 was 58% for well-differentiated HCCs, 50% for moderately-differentiated HCCs, and 43% for poorly-differentiated HCCs. ∆T1 showed statistical differences between the groups (P<0.001). The mean ADC values of the 3 groups were 1.11×10−3 mm2/s, 0.91×10−3 mm2/s, and 0.80×10−3mm2/s, respectively. ADC showed statistical differences between the groups (P<0.001). In discriminating well- differentiated group from the moderately differentiated group, the AUC of ∆T1 was 0.751 (95% CI: 0.642, 0.859), the AUC of ADC was 0.782 (95% CI: 0.671, 0.894), the AUC of combined model was 0.811 (95% CI: 0.709, 0.914). In discriminating the poorly differentiated group from the moderately differentiated group, the AUC of ∆T1 was 0.768 (95% CI: 0.634, 0.902), the AUC of ADC was 0.754 (95% CI: 0.603, 0.904), and the AUC of the combined model was 0.841 (95% CI: 0.729, 0.953).

Conclusion:

Gd-EOB-DTPA enhanced T1 mapping, and ADC values have complementary effects on the sensitivity and specificity for identifying different HCC grades. A combined model of Gd-EOB-DTPA-enhanced MRI T1 mapping and ADC values could improve diagnostic performance for predicting HCC grades.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056259418231112102249
2024-01-01
2025-10-27
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056259418.html?itemId=/content/journals/cmir/10.2174/0115734056259418231112102249&mimeType=html&fmt=ahah

References

  1. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.2126225651787
    [Google Scholar]
  2. ChenW. ZhengR. BaadeP.D. ZhangS. ZengH. BrayF. JemalA. YuX.Q. HeJ. Cancer statistics in China, 2015.CA Cancer J. Clin.201666211513210.3322/caac.2133826808342
    [Google Scholar]
  3. LauwersG.Y. TerrisB. BalisU.J. BattsK.P. RegimbeauJ.M. ChangY. Graeme-CookF. YamabeH. IkaiI. ClearyK.R. FujitaS. FlejouJ.F. ZukerbergL.R. NagorneyD.M. BelghitiJ. YamaokaY. VautheyJ.N. Prognostic histologic indicators of curatively resected hepatocellular carcinomas: A multi-institutional analysis of 425 patients with definition of a histologic prognostic index.Am. J. Surg. Pathol.2002261253410.1097/00000478‑200201000‑0000311756766
    [Google Scholar]
  4. JonasS. BechsteinW.O. SteinmüllerT. HerrmannM. RadkeC. BergT. SettmacherU. NeuhausP. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis.Hepatology20013351080108610.1053/jhep.2001.2356111343235
    [Google Scholar]
  5. ZhouL. RuiJ.A. YeD.X. WangS.B. ChenS.G. QuQ. Edmondson-Steiner grading increases the predictive efficiency of TNM staging for long-term survival of patients with hepatocellular carcinoma after curative resection.World J. Surg.20083281748175610.1007/s00268‑008‑9615‑818493820
    [Google Scholar]
  6. ZhouL. RuiJ.A. ZhouW.X. WangS.B. ChenS.G. QuQ. Edmondson-Steiner grade: A crucial predictor of recurrence and survival in hepatocellular carcinoma without microvascular invasio.Pathol. Res. Pract.2017213782483010.1016/j.prp.2017.03.00228554743
    [Google Scholar]
  7. ZhouL. RuiJ.A. WangS.B. ChenS.G. QuQ. Risk factors of microvascular invasion, portal vein tumor thrombosis and poor post-resectional survival in HBV-related hepatocellular carcinoma.Hepatogastroenterology2014611341696170325436365
    [Google Scholar]
  8. KimA.Y. KimY.K. LeeM.W. ParkM.J. HwangJ. LeeM.H. LeeJ.W. Detection of hepatocellular carcinoma in gadoxetic acid-enhanced MRI and diffusion-weighted MRI with respect to the severity of liver cirrhosis.Acta Radiol.201253883083810.1258/ar.2012.12009922847903
    [Google Scholar]
  9. KimH.Y. ChoiJ.Y. KimC.W. BaeS.H. YoonS.K. LeeY.J. RhaS.E. YouY.K. KimD.G. JungE.S. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging predicts the histological grade of hepatocellular carcinoma only in patients with child-pugh class a cirrhosis.Liver Transpl.201218785085710.1002/lt.2342622407909
    [Google Scholar]
  10. TangY. WangH. MaL. ZhangX. YuG. LiJ. YeH. Diffusion-weighted imaging of hepatocellular carcinomas: A retrospective analysis of correlation between apparent diffusion coefficients and histological grade.Abdom. Radiol.20164181539154510.1007/s00261‑016‑0715‑x27003574
    [Google Scholar]
  11. NasuK. KurokiY. TsukamotoT. NakajimaH. MoriK. MinamiM. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: Imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade.AJR Am. J. Roentgenol.2009193243844410.2214/AJR.08.142419620441
    [Google Scholar]
  12. ChoiJ.W. LeeJ.M. KimS.J. YoonJ.H. BaekJ.H. HanJ.K. ChoiB.I. Hepatocellular carcinoma: Imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker.Radiology2013267377678610.1148/radiol.1312077523401584
    [Google Scholar]
  13. QinX. YangT. HuangZ. LongL. ZhouZ. LiW. GaoY. WangM. ZhangX. Hepatocellular carcinoma grading and recurrence prediction using T1 mapping on gadolinium‑ethoxybenzyl diethylenetriamine pentaacetic acid‑enhanced magnetic resonance imaging.Oncol. Lett.20191832322232910.3892/ol.2019.1055731404322
    [Google Scholar]
  14. SchelhornJ. BestJ. DechêneA. GöbelT. BertramS. LauensteinT. KinnerS. Evaluation of combined Gd-EOB-DTPA and gadobutrol magnetic resonance imaging for the prediction of hepatocellular carcinoma grading.Acta Radiol.201657893293810.1177/028418511561629326586852
    [Google Scholar]
  15. Margaret ChengH-L. StikovN. GhugreN.R. WrightG.A. Practical medical applications of quantitative MR relaxometry.J. Magn. Reson. Imaging201236480582410.1002/jmri.2371822987758
    [Google Scholar]
  16. DingY. RaoS.X. MengT. ChenC. LiR. ZengM.S. Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease.Eur. Radiol.201424495996610.1007/s00330‑014‑3096‑y24463697
    [Google Scholar]
  17. PanS. WangX.Q. GuoQ.Y. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging.World J. Gastroenterol.201824182024203510.3748/wjg.v24.i18.202429760545
    [Google Scholar]
  18. PengZ. LiC. ChanT. CaiH. LuoY. DongZ. LiZ.P. FengS.T. Quantitative evaluation of Gd-EOB-DTPA uptake in focal liver lesions by using T1 mapping: differences between hepatocellular carcinoma, hepatic focal nodular hyperplasia and cavernous hemangioma.Oncotarget2017839654356544410.18632/oncotarget.1891829029443
    [Google Scholar]
  19. ZhouZ.P. LongL.L. QiuW.J. ChengG. HuangL.J. YangT.F. HuangZ.K. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla.BMC Med. Imaging20171712010.1186/s12880‑017‑0192‑x28249571
    [Google Scholar]
  20. ChenC.Y. ChenJ. XiaC.C. HuangZ.X. SongB. T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma.J. Biol. Regul. Homeost. Agents20173141029103629254310
    [Google Scholar]
  21. PengZ. JiangM. CaiH. ChanT. DongZ. LuoY. LiZ.P. FengS.T. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma.BMC Cancer201616162510.1186/s12885‑016‑2607‑427520833
    [Google Scholar]
  22. QinX. MuR. ZhengW. LiX. LiuF. ZhuangZ. YangP. ZhuX. Comparison and combination of amide proton transfer magnetic resonance imaging and the apparent diffusion coefficient in differentiating the grades of prostate cancer.Quant. Imaging Med. Surg.202313281282410.21037/qims‑22‑72136819246
    [Google Scholar]
  23. NagtegaalI.D. OdzeR.D. KlimstraD. ParadisV. RuggeM. SchirmacherP. WashingtonK.M. CarneiroF. CreeI.A. The 2019 WHO classification of tumours of the digestive system.Histopathology202076218218810.1111/his.1397531433515
    [Google Scholar]
  24. ZhuX. MuR. MengZ. ZhangX. GuoZ. ZhengW. ZhuangZ. Parameters of dual-layer spectral detector CT could be used to differentiate non-small cell lung cancer from small cell lung cancer.Curr. Med. Imaging Rev.202218101070107810.2174/157340561866622030810535935260059
    [Google Scholar]
  25. KitaoA. MatsuiO. YonedaN. KozakaK. KobayashiS. KodaW. MinamiT. InoueD. YoshidaK. YamashitaT. YamashitaT. KanekoS. TakamuraH. OhtaT. IkedaH. SatoY. NakanumaY. HaradaK. KitaR. GabataT. Gadoxetic acid-enhanced magnetic resonance imaging reflects co-activation of β-catenin and hepatocyte nuclear factor 4α in hepatocellular carcinoma.Hepatol. Res.201848220521610.1111/hepr.1291128488786
    [Google Scholar]
  26. YamashitaT. KitaoA. MatsuiO. HayashiT. NioK. KondoM. OhnoN. MiyatiT. OkadaH. YamashitaT. MizukoshiE. HondaM. NakanumaY. TakamuraH. OhtaT. NakamotoY. YamamotoM. TakayamaT. AriiS. WangX. KanekoS. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma.Hepatology20146051674168510.1002/hep.2709324700365
    [Google Scholar]
  27. XiaL. HuangW. TianD. ZhuH. ZhangY. HuH. FanD. NieY. WuK. Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma.J. Hepatol.201257360061210.1016/j.jhep.2012.04.02022613004
    [Google Scholar]
  28. KitaoA. MatsuiO. YonedaN. KozakaK. ShinmuraR. KodaW. KobayashiS. GabataT. ZenY. YamashitaT. KanekoS. NakanumaY. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: Correlation with gadoxetic acid enhanced MR imaging.Eur. Radiol.201121102056206610.1007/s00330‑011‑2165‑821626360
    [Google Scholar]
  29. MotosugiU. IchikawaT. SouH. SanoK. TominagaL. KitamuraT. ArakiT. Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: Which biological markers of the liver function affect the enhancement?J. Magn. Reson. Imaging20093051042104610.1002/jmri.2195619856436
    [Google Scholar]
  30. GranataV. FuscoR. CatalanoO. GuarinoB. GranataF. TatangeloF. AvalloneA. PiccirilloM. PalaiaR. IzzoF. PetrilloA. Intravoxel incoherent motion (IVIM) in diffusion-weighted imaging (DWI) for Hepatocellular carcinoma: Correlation with histologic grade.Oncotarget2016748793577936410.18632/oncotarget.1268927764817
    [Google Scholar]
  31. GuoW. ZhaoS. YangY. ShaoG. Histological grade of hepatocellular carcinoma predicted by quantitative diffusion-weighted imaging.Int. J. Clin. Exp. Med.2015834164416926064326
    [Google Scholar]
  32. ChangW.C. ChenR.C. ChouC.T. LinC.Y. YuC.Y. LiuC.H. ChouJ.M. HsuH.H. HuangG.S. Histological grade of hepatocellular carcinoma correlates with arterial enhancement on gadoxetic acid-enhanced and diffusion-weighted MR images.Abdom. Imaging20143961202121210.1007/s00261‑014‑0168‑z24869790
    [Google Scholar]
  33. SurovA. PechM. OmariJ. FischbachF. DammR. FischbachK. PowerskiM. ReljaB. WienkeA. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma.Liver Cancer2021101102410.1159/00051138433708636
    [Google Scholar]
  34. YamadaI. AungW. HimenoY. NakagawaT. ShibuyaH. Diffusion coefficients in abdominal organs and hepatic lesions: Evaluation with intravoxel incoherent motion echo-planar MR imaging.Radiology1999210361762310.1148/radiology.210.3.r99fe1761710207458
    [Google Scholar]
  35. NishieA. TajimaT. AsayamaY. IshigamiK. KakiharaD. NakayamaT. TakayamaY. OkamotoD. FujitaN. TaketomiA. YoshimitsuK. HondaH. Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma.Eur. J. Radiol.2011802e29e3310.1016/j.ejrad.2010.06.01920619566
    [Google Scholar]
  36. WooS. LeeJ.M. YoonJ.H. JooI. HanJ.K. ChoiB.I. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: Correlation with enhancement degree and histologic grade.Radiology2014270375876710.1148/radiol.1313044424475811
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056259418231112102249
Loading
/content/journals/cmir/10.2174/0115734056259418231112102249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test