Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Glaucoma is a significant cause of irreversible blindness worldwide, with symptoms often going undetected until the patient's visual field starts shrinking.

Objetive

To develop an AI-based glaucoma detection method to reduce glaucoma-related blindness and offer more precise diagnosis.

Methods

Discusses various methods and technologies, including Heidelberg Retinal Tomography (HRT), Optical Coherence Tomography (OCT), and Fundus Photography, for obtaining relevant information about the presence of glaucoma in a patient. Additionally, it mentions the use of Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) for glaucoma detection. There are many limitations for existing methods as; Asymptomatic Progression, reliance on subjective feedback, multiple tests required, late detection, limited availability of preventive tests, influence of external factors.

Results

Findings reveal promising outcomes in terms of glaucoma detection accuracy, particularly in the analysis of the RIM-ONE-r3 dataset. By scrutinizing 20 images from the Healthy, Glaucoma, and Suspects categories through fundus image recognition, our developed AI model consistently achieved high diagnostic accuracy rates.

Conclusion

Our study suggests that further enhancements in glaucoma detection accuracy are attainable by augmenting the dataset with additional labeled images. We emphasize the significance of considering various application parameters when discussing the integration of computer-aided decision/management systems into healthcare frameworks.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056257657231115051020
2024-01-01
2025-08-17
The full text of this item is not currently available.

References

  1. NisarD-E-M. AminR. ShahN-U-H. GhamdiM.A.A. AlmotiriS.H. AlruilyM. Healthcare techniques through deep learning: Issues, challenges and opportunities.IEEE Access20219985239854110.1109/ACCESS.2021.3095312
    [Google Scholar]
  2. LiuJ. ZhangZ. WongD.W.K. XuY. YinF. ChengJ. TanN.M. KwohC.K. XuD. ThamY.C. AungT. WongT.Y. Automatic glaucoma diagnosis through medical imaging informatics.J. Am. Med. Inform. Assoc.20132061021102710.1136/amiajnl‑2012‑00133623538725
    [Google Scholar]
  3. KhalilT. KhalidS. SyedA.M. Review of machine learning techniques for glaucoma detection and prediction.2014 Science and Information Conference27-29 August 2014London, UK201410.1109/SAI.2014.6918224
    [Google Scholar]
  4. ThompsonA.C. JammalA.A. MedeirosF.A. A review of deep learning for screening, diagnosis, and detection of glaucoma progression.Transl. Vis. Sci. Technol.2020924210.1167/tvst.9.2.4232855846
    [Google Scholar]
  5. MirzaniaD. ThompsonA.C. MuirK.W. Applications of deep learning in detection of glaucoma: A systematic review.Eur. J. Ophthalmol.20213141618164210.1177/112067212097734633274641
    [Google Scholar]
  6. GrewalP.S. OloumiF. RubinU. TennantM.T.S. Deep learning in ophthalmology: A review.Can. J. Ophthalmol.201853430931310.1016/j.jcjo.2018.04.01930119782
    [Google Scholar]
  7. DeyA. BandyopadhyayS. Automated glaucoma detection using support vector machine classification method.Br. J. Med. Med. Res.2016111211210.9734/BJMMR/2016/19617
    [Google Scholar]
  8. DasP. NirmalaS.R. MedhiJ.P. Diagnosis of glaucoma using CDR and NRR area in retina images.Netw. Model. Anal. Health Inform. Bioinform.201651310.1007/s13721‑015‑0110‑5
    [Google Scholar]
  9. VimalS. RobinsonY.H. KaliappanM. VijayalakshmiK. SeoS. A method of progression detection for glaucoma using K-means and the GLCM algorithm toward smart medical prediction.J Supercomput20217711894
    [Google Scholar]
  10. KingmanS. Glaucoma is second leading cause of blindness globally.Bull. World Health Organ.2004821188788815640929
    [Google Scholar]
  11. KanseS.S. YadavD.M. Retinal fundus image for glaucoma detection: A review and study.Journal of Intelligent Systems2019281435610.1515/jisys‑2016‑0258
    [Google Scholar]
  12. AhmedS. KhanZ. SiF. MaoA. PanI. YazdiF. TsertsvadzeA. HutnikC. MoherD. TingeyD. TropeG.E. DamjiK.F. TarrideJ.E. GoereeR. HodgeW. Summary of glaucoma diagnostic testing accuracy: An evidence-based meta-analysis.J. Clin. Med. Res.20168964164910.14740/jocmr2643w27540437
    [Google Scholar]
  13. Molina-CasadoJ.M. CarmonaE.J. García-FeijoóJ. Fast detection of the main anatomical structures in digital retinal images based on intra- and inter-structure relational knowledge.Comput. Methods Programs Biomed.2017149556810.1016/j.cmpb.2017.06.02228802330
    [Google Scholar]
  14. DiamondDM CampbellAM ParkCR HalonenJ ZoladzPR The temporal dynamics model of emotional memory processing: A synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law.Neural plasticity200720076080310.1155/2007/60803
    [Google Scholar]
  15. SaxenaA VyasA ParasharL SinghU. A glaucoma detection using convolutional neural network.2020 International Conference on Electronics and Sustainable Communication Systems (ICESC)02-04 July 2020Coimbatore, India202010.1109/ICESC48915.2020.9155930
    [Google Scholar]
  16. BajwaM.N. MalikM.I. SiddiquiS.A. DengelA. ShafaitF. NeumeierW. AhmedS. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.BMC Med. Inform. Decis. Mak.20191911630616584
    [Google Scholar]
  17. LatifJ. TuS. XiaoC. RehmanS.U. SadiqM. FarhanM. Digital forensics use case for glaucoma detection using transfer learning based on deep convolutional neural networks.Secur. Commun. Netw.2021202111310.1155/2021/4494447
    [Google Scholar]
  18. GaraizarP. VadilloM.A. López-de-IpiñaD. MatuteH. Measuring software timing errors in the presentation of visual stimuli in cognitive neuroscience experiments.PLoS One201491e8510810.1371/journal.pone.008510824409318
    [Google Scholar]
  19. Civit-MasotJ. Domínguez-MoralesM.J. Vicente-DíazS. CivitA. Dual machine-learning system to aid glaucoma diagnosis using disc and cup feature extraction.IEEE Access2020812751912752910.1109/ACCESS.2020.3008539
    [Google Scholar]
  20. CamaraJ. NetoA. PiresI.M. VillasanaM.V. ZdravevskiE. CunhaA. Literature review on artificial intelligence methods for glaucoma screening, segmentation, and classification.J. Imaging2022821910.3390/jimaging802001935200722
    [Google Scholar]
  21. FumeroF. AlayónS. SanchezJ.L. SigutJ. Gonzalez-HernandezM. RIM-ONE: An open retinal image database for optic nerve evaluation.2011 24th international symposium on computer-based medical systems27-30 June 2011Bristol, UK2011
    [Google Scholar]
  22. FuH ChengJ XuY LiuJ Glaucoma detection based on deep learning network in fundus image.Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics201910.1007/978‑3‑030‑13969‑8_6
    [Google Scholar]
  23. ShabbirA. RasheedA. ShehrazH. SaleemA. ZafarB. SajidM. AliN. DarS.H. ShehryarT. Detection of glaucoma using retinal fundus images: A comprehensive review.Math. Biosci. Eng.20211832033207610.3934/mbe.202110633892536
    [Google Scholar]
  24. LecunY. BottouL. BengioY. HaffnerP. Gradient-based learning applied to document recognition.Proc. IEEE199886112278232410.1109/5.726791
    [Google Scholar]
  25. DeepLearning series: Convolutional Neural Networks.Available from: https://medium.com/machine-learning-bites/deeplearning-series-convolutional-neural-networks-a9c2f2ee1524
  26. Why is ReLU used as an activation function?Available from: https://datascience.stackexchange.com/questions/26475/why-is-relu-used-as-an-activation-function
/content/journals/cmir/10.2174/0115734056257657231115051020
Loading
/content/journals/cmir/10.2174/0115734056257657231115051020
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AI model; Blindness; CNN; Digital fundus images; Glaucoma detection; RIM-ONE-r3 Dataset
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test