Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background:

Accurate preoperative judgment of lymph node (LN) metastasis is a critical step in creating a treatment strategy and evaluating prognosis in rectal cancer (RC) patients.

Objective:

This study aimed to explore the value of T1 mapping and amide proton transfer weighted (APTw) imaging in predicting LN metastasis in patients with rectal cancer.

Methods:

In a retrospective study, twenty-three patients with pathologically confirmed rectal adenocarcinoma who underwent MRI and surgery from August 2019 to August 2021 were selected. Then, 3.0T/MR sequences included conventional sequences (T1WI, T2WI, and DWI), APTw imaging, and T1 mapping. Patients were divided into LN metastasis (group A) and non-LN metastasis groups (group B). The intra-group correlation coefficient (ICC) was used to test the inter-observer consistency. Mann-Whitney U test was used to compare the differences between the two groups. Spearman correlation analysis was performed to evaluate the correlation between T1 and APT values. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the differential performance of each parameter and their combination. The difference between AUCs was compared using the DeLong test.

Results:

The APT value in patients with LN metastasis was significantly higher than in those without LN metastasis group (P=0.020). Also, similar results were observed for the T1 values (P=0.001). The area under the ROC curve of the APT value in the prediction of LN metastasis was 0.794; when the cutoff value was 1.73%, the sensitivity and specificity were 71.4% and 88.9%, respectively. The area under the ROC curve of the T1 value was 0.913; when the cutoff value was 1367.36 ms, the sensitivity and specificity were 78.6% and 100.0%, respectively. The area under the ROC curve of T1+APT was 0.929, with a sensitivity of 78.6% and specificity of 100.0%.

Conclusion:

APT and T1 values show great diagnostic efficiency in predicting LN metastasis in rectal cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056251952231012155314
2024-01-01
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056251952.html?itemId=/content/journals/cmir/10.2174/0115734056251952231012155314&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. LiuL. LiuM. YangZ. HeW. WangZ. JinE. Correlation of MRI-detected extramural vascular invasion with regional lymph node metastasis in rectal cancer.Clin. Imaging201640345646010.1016/j.clinimag.2016.01.00727133686
    [Google Scholar]
  3. Al-SukhniE. MilotL. FruitmanM. BeyeneJ. VictorJ.C. SchmockerS. BrownG. McLeodR. KennedyE. Diagnostic accuracy of MRI for assessment of T category, lymph node metastases, and circumferential resection margin involvement in patients with rectal cancer: A systematic review and meta-analysis.Ann. Surg. Oncol.20121972212222310.1245/s10434‑011‑2210‑522271205
    [Google Scholar]
  4. KimS.H. SongB.I. KimB.W. KimH.W. WonK.S. BaeS.U. JeongW.K. BaekS.K. Predictive value of [18F]FDG PET/CT for lymph node metastasis in rectal cancer.Sci. Rep.201991497910.1038/s41598‑019‑41422‑830899056
    [Google Scholar]
  5. HoshinoN. MurakamiK. HidaK. SakamotoT. SakaiY. Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: A systematic review and meta-analysis.Int. J. Clin. Oncol.2019241465210.1007/s10147‑018‑1349‑530259217
    [Google Scholar]
  6. LiX.T. SunY.S. TangL. CaoK. ZhangX.Y. Evaluating local lymph node metastasis with magnetic resonance imaging, endoluminal ultrasound and computed tomography in rectal cancer: A meta-analysis.Colorectal Dis.2015176O129O13510.1111/codi.1290925628186
    [Google Scholar]
  7. LangmanG. PatelA. BowleyD.M. Size and distribution of lymph nodes in rectal cancer resection specimens.Dis. Colon Rectum201558440641410.1097/DCR.000000000000032125751797
    [Google Scholar]
  8. ZhouY. YuT. RuiX. JinT. HuangZ. HuangZ. Effectiveness of diffusion-weighted imaging in predicting cervical lymph node metastasis in head and neck malignancies.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.20211311122129.e210.1016/j.oooo.2020.06.02532807714
    [Google Scholar]
  9. LiC. YinJ. Radiomics based on T2-weighted imaging and apparent diffusion coefficient images for preoperative evaluation of lymph node metastasis in rectal cancer patients.Front. Oncol.20211167135410.3389/fonc.2021.67135434041033
    [Google Scholar]
  10. LiF. HuJ. JiangH. SunY. Diagnosis of lymph node metastasis on rectal cancer by PET-CT computer imaging combined with MRI technology.J. Infect. Public Health20201391347135310.1016/j.jiph.2019.06.02631289005
    [Google Scholar]
  11. YangX. ChenY. WenZ. LuB. ShenB. XiaoX. YuS. Role of quantitative dynamic contrast-enhanced mri in evaluating regional lymph nodes with a short-axis diameter of less than 5 mm in rectal cancer.AJR Am. J. Roentgenol.20192121778310.2214/AJR.18.1986630354269
    [Google Scholar]
  12. YuX. WenL. HouJ. WangH. LuQ. Discrimination of metastatic from non-metastatic mesorectal lymph nodes in rectal cancer using quantitative dynamic contrast-enhanced magnetic resonance imaging.J. Huazhong Univ. Sci. Technolog. Med. Sci.201636459460010.1007/s11596‑016‑1631‑627465339
    [Google Scholar]
  13. ZhouJ. HeoH.Y. KnutssonL. van ZijlP.C.M. JiangS. APT-weighted MRI: Techniques, current neuro applications, and challenging issues.J. Magn. Reson. Imaging201950234736410.1002/jmri.2664530663162
    [Google Scholar]
  14. KamimuraK. NakajoM. YoneyamaT. TakumiK. KumagaeY. FukukuraY. YoshiuraT. Amide proton transfer imaging of tumors: Theory, clinical applications, pitfalls, and future directions.Jpn. J. Radiol.201937210911610.1007/s11604‑018‑0787‑330341472
    [Google Scholar]
  15. MomosakaD. TogaoO. KikuchiK. KikuchiY. WakisakaY. HiwatashiA. Correlations of amide proton transfer-weighted MRI of cerebral infarction with clinico-radiological findings.PLoS One2020158e023735810.1371/journal.pone.023735832790705
    [Google Scholar]
  16. QamarS. KingA.D. AiQ.Y.H. MoF.K.F. ChenW. PoonD.M.C. TongM. MaB.B. YeungD.K.W. WangY.X. YuanJ. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma.Eur. Radiol.202030116339634710.1007/s00330‑020‑06985‑532588210
    [Google Scholar]
  17. KamitaniT. SagiyamaK. TogaoO. YamasakiY. HidaT. MatsuuraY. MurayamaY. YasumatsuR. YamamotoH. YabuuchiH. Amide proton transfer (APT) imaging of parotid tumors: Differentiation of malignant and benign tumors.Eur. J. Radiol.202012910904710.1016/j.ejrad.2020.10904732460200
    [Google Scholar]
  18. SeoN. JeongH.K. ChoiJ.Y. ParkM.S. KimM.J. ChungY.E. Liver MRI with amide proton transfer imaging: Feasibility and accuracy for the characterization of focal liver lesions.Eur. Radiol.202131122223110.1007/s00330‑020‑07122‑y32785767
    [Google Scholar]
  19. TakayamaY. NishieA. TogaoO. AsayamaY. IshigamiK. UshijimaY. OkamotoD. FujitaN. SonodaK. HidaT. OhishiY. KeuppJ. HondaH. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: Association with histologic grade.Radiology2018286390991710.1148/radiol.201717034929083987
    [Google Scholar]
  20. YuH. LouH. ZouT. WangX. JiangS. HuangZ. DuY. JiangC. MaL. ZhuJ. HeW. RuiQ. ZhouJ. WenZ. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma.Eur. Radiol.201727114516452410.1007/s00330‑017‑4867‑z28534162
    [Google Scholar]
  21. WeiQ. YuanW. JiaZ. ChenJ. LiL. YanZ. LiaoY. MaoL. HuS. LiuX. ChenW. Preoperative MR radiomics based on high-resolution T2-weighted images and amide proton transfer-weighted imaging for predicting lymph node metastasis in rectal adenocarcinoma.Abdom. Radiol.202248245847010.1007/s00261‑022‑03731‑x36460837
    [Google Scholar]
  22. ChenW. LiL. YanZ. HuS. FengJ. LiuG. LiuB. LiuX. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: Correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging.Eur. Radiol.20213153286329610.1007/s00330‑020‑07397‑133125558
    [Google Scholar]
  23. TaylorA.J. SalernoM. DharmakumarR. Jerosch-HeroldM. T1 mapping.JACC Cardiovasc. Imaging201691678110.1016/j.jcmg.2015.11.00526762877
    [Google Scholar]
  24. Graham-BrownM.P. SinghA. WormleightonJ. BrunskillN.J. McCannG.P. BarrattJ. BurtonJ.O. XuG. Association between native T1 mapping of the kidney and renal fibrosis in patients with IgA nephropathy.BMC Nephrol.201920125610.1186/s12882‑019‑1447‑231296183
    [Google Scholar]
  25. LuB. LinJ. DuJ. HeS. CaoQ. HuangL. MaoR. SunC. LiZ. FengS. LiX. Native T 1 mapping and magnetization transfer imaging in grading bowel fibrosis in crohn’s disease: A comparative animal study.Biosensors202111930210.3390/bios1109030234562892
    [Google Scholar]
  26. ShinJ.M. ChoiE.Y. ParkC.H. HanK. KimT.H. Quantitative T1 mapping for detecting microvascular obstruction in reperfused acute myocardial infarction: Comparison with late gadolinium enhancement imaging.Korean J. Radiol.202021897898610.3348/kjr.2019.073632677382
    [Google Scholar]
  27. PanJ.A. KerwinM.J. SalernoM. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis.JACC Cardiovasc. Imaging20201361299131010.1016/j.jcmg.2020.03.01032498919
    [Google Scholar]
  28. XuJ. ZhuangB. SirajuddinA. LiS. HuangJ. YinG. SongL. JiangY. ZhaoS. LuM. MRI T1 mapping in hypertrophic cardiomyopathy: Evaluation in patients without late gadolinium enhancement and hemodynamic obstruction.Radiology2020294227528610.1148/radiol.201919065131769741
    [Google Scholar]
  29. NakamoriS. DohiK. IshidaM. GotoY. Imanaka-YoshidaK. OmoriT. GotoI. KumagaiN. FujimotoN. IchikawaY. KitagawaK. YamadaN. SakumaH. ItoM. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy.JACC Cardiovasc. Imaging2018111485910.1016/j.jcmg.2017.04.00628624408
    [Google Scholar]
  30. LiJ. GaoX. Dominik NickelM. ChengJ. ZhuJ. Native T1 mapping for differentiating the histopathologic type, grade, and stage of rectal adenocarcinoma: A pilot study.Cancer Imaging20222213010.1186/s40644‑022‑00461‑735715848
    [Google Scholar]
  31. YuanJ. WenQ. WangH. WangJ. LiuK. ZhanS. LiuM. GongZ. TanW. The use of quantitative T1-mapping to identify cells and collagen fibers in rectal cancer.Front. Oncol.202313118933410.3389/fonc.2023.118933437546428
    [Google Scholar]
  32. JuY. LiuA. WangY. ChenL. WangN. BuX. DuC. JiangH. WangJ. LinL. Amide proton transfer magnetic resonance imaging to evaluate renal impairment in patients with chronic kidney disease.Magn. Reson. Imaging20228717718210.1016/j.mri.2021.11.01534863880
    [Google Scholar]
  33. StoneR.C. PastarI. OjehN. ChenV. LiuS. GarzonK.I. Tomic-CanicM. Epithelial-mesenchymal transition in tissue repair and fibrosis.Cell Tissue Res.2016365349550610.1007/s00441‑016‑2464‑027461257
    [Google Scholar]
  34. NishieA. TakayamaY. AsayamaY. IshigamiK. UshijimaY. OkamotoD. FujitaN. TsurumaruD. TogaoO. ManabeT. OkiE. KuboY. HidaT. Hirahashi-FujiwaraM. KeuppJ. HondaH. Amide proton transfer imaging can predict tumor grade in rectal cancer.Magn. Reson. Imaging2018519610310.1016/j.mri.2018.04.01729729438
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056251952231012155314
Loading
/content/journals/cmir/10.2174/0115734056251952231012155314
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test