Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Magnetic resonance imaging (MRI) is a handy diagnostic tool for orthopedic disorders, particularly spinal and joint diseases.

Methods

The lumbar intervertebral disc is visible in the T1 and T2 weight sequences of the spine MRI, which aids in diagnosing lumbar disc herniation, lumbar spine tuberculosis, lumbar spine tumors, and other conditions. The lumbar intervertebral disc cannot be seen accurately in the Spectral Attenuated Inversion Recovery (SPAIR) due to weaknesses in the fat and frequency offset parameters, which is not conducive to developing the intelligence diagnosis model of medical image.

Results

In order to solve this problem, we propose a composite framework, which is first to use the contrast limited adaptive histogram equalization (CLAHE) method to enhance the SPAIR image contrast of the spine MRI and then use the non-local means method to remove the noise of the image to ensure that the image contrast is uniform without losing details. We employ the Information Entropy (IE), Peak signal-to-noise ratio (PSNR), and feature similarity index measure (FSIM) to quantify image quality after enhancement by the composite framework.

Conclusion

The outcomes of the experiments’ output images and quantitative data indicate that our composite framework is better than others.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056251482231107072125
2024-01-01
2025-10-13
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056251482.html?itemId=/content/journals/cmir/10.2174/0115734056251482231107072125&mimeType=html&fmt=ahah

References

  1. SiddiquiM.A. SartajS. RizviS.W.A. KhanM.J. KhanI.A. Role of whole-spine screening magnetic resonance imaging using short tau inversion recovery or fat-suppressed T2 Fast spin echo sequences for detecting noncontiguous multiple-level spinal tuberculosis.Asian Spine J.201812468669010.31616/asj.2018.12.4.68630060377
    [Google Scholar]
  2. HilleG. SaalfeldS. SerowyS. TönniesK. Vertebral body segmentation in wide range clinical routine spine MRI data.Comput. Methods Programs Biomed.2018155939910.1016/j.cmpb.2017.12.01329512508
    [Google Scholar]
  3. KristoffersenP.M. VettiN. StorheimK. BråtenL.C. RolfsenM.P. AssmusJ. EspelandA. Short tau inversion recovery MRI of Modic changes: A reliability study.Acta Radiol. Open20209110.1177/205846012090240232064122
    [Google Scholar]
  4. PokorneyA.L. ChiaJ.M. PfeiferC.M. MillerJ.H. HuH.H. Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T.Acta Radiol.201758111386139410.1177/028418511769042428165290
    [Google Scholar]
  5. DaltoV.F. AssadR.L. CremaM.D. Louzada-JuniorP. Nogueira-BarbosaM.H. MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: Is the SPAIR T2w technique comparable to STIR?Eur. Radiol.20172793669367610.1007/s00330‑017‑4746‑728168365
    [Google Scholar]
  6. LiuY. HeX. Design of medical image detail enhancement algorithm for ankle joint talar osteochondral injury.J. Healthc. Eng.202120211810.1155/2021/738146634745509
    [Google Scholar]
  7. VeluchamyM. SubramaniB. Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction.Appl. Soft Comput.20208910607710.1016/j.asoc.2020.106077
    [Google Scholar]
  8. SiciarzP. McCurdyB. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans.Phys. Med. Biol.2022671111500710.1088/1361‑6560/ac530e35134792
    [Google Scholar]
  9. BaiZ. YangK. XieL. LeeJ.L. GaoX. A histogram equalization algorithm based on building a grey level binary tree dynamically.Optik202022422416569510.1016/j.ijleo.2020.165695
    [Google Scholar]
  10. KimY.T. Contrast enhancement using brightness preserving bi-histogram equalization.IEEE Trans. Consum. Electron.199714318
    [Google Scholar]
  11. Chao Wang Zhongfu Ye Brightness preserving histogram equalization with maximum entropy: A variational perspective.IEEE Trans. Consum. Electron.20055141326133410.1109/TCE.2005.1561863
    [Google Scholar]
  12. SinghP. MukundanR. De RykeR. Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization.J. Digit. Imaging202033127328510.1007/s10278‑019‑00211‑531270646
    [Google Scholar]
  13. GonzalezR.C. WoodsR.E. Digital Image Processing.3rd 2006269279
    [Google Scholar]
  14. ArceG R GallagherN C NodesT A Median filters: theory for one-and two-dimensional filters.Advances in computer vision and image processing.1986289166
    [Google Scholar]
  15. FangL. ZhirenD. Denoising algorithm based on adaptive wavelet threshold and bilateral filter.Xitong Fangzhen Xuebao2014261229342938
    [Google Scholar]
  16. RashidM.H.O. MamunM.A. HossainM.A. Brain tumor detection using anisotropic filtering, SVM classifier and morphological operation from MR Images.2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering,pp.1-4, 2018.10.1109/IC4ME2.2018.8465613
    [Google Scholar]
  17. VargheesV. ManikandanM. GiniR. Adaptive MRI image denoising using total-variation and local noise estimation.IEEE-International Conference On Advances In Engineering, Science And Managemen2012506511
    [Google Scholar]
  18. ZhuY. ShenW. ChengF. JinC. CaoG. Removal of high density Gaussian noise in compressed sensing MRI reconstruction through modified total variation image denoising method.Heliyon202063e0368010.1016/j.heliyon.2020.e0368032258499
    [Google Scholar]
  19. Akdemir AkarS. DiekhoffT. SieperJ. Determination of optimal parameters for bilateral filter in brain MR image denoising.Appl. Soft Comput.201643879610.1016/j.asoc.2016.02.043
    [Google Scholar]
  20. BuadesA. CollB. MorelJ.M. A review of image denoising algorithms, with a new one.Multiscale Model. Simul.20054249053010.1137/040616024
    [Google Scholar]
  21. MalekiA. NarayanM. BaraniukR.G. Anisotropic nonlocal means denoising.Appl. Comput. Harmon. Anal.201335345248210.1016/j.acha.2012.11.003
    [Google Scholar]
  22. BaseliceF. FerraioliG. PascazioV. SorrisoA. Denoising of MR images using Kolmogorov-Smirnov distance in a Non Local framework.Magn. Reson. Imaging20195717619310.1016/j.mri.2018.11.02230517847
    [Google Scholar]
  23. ManjónJ. CarbonellcaballeroJ. LullJ. GarcíamartíG. MartíbonmatíL. RoblesM. MRI denoising using non-local means.Med. Image Anal.200812451452310.1016/j.media.2008.02.00418381247
    [Google Scholar]
  24. PizerS.M. AmburnE.P. AustinJ.D. CromartieR. GeselowitzA. GreerT. ter Haar RomenyB. ZimmermanJ.B. ZuiderveldK. Adaptive histogram equalization and its variations.Comput. Vis. Graph. Image Process.198739335536810.1016/S0734‑189X(87)80186‑X
    [Google Scholar]
  25. BuadesA. CollB. MorelJ.M. A non-local algorithm for image denoising.2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.60-65, 2005.10.1109/CVPR.2005.38
    [Google Scholar]
  26. SparavignaA.C. Entropy in image analysis.Entropy201921550210.3390/e2105050233267216
    [Google Scholar]
  27. SaraU. AkterM. UddinM.S. Image quality assessment through FSIM, SSIM, MSE and PSNR : A comparative study.J. Comp. Commun.20197381810.4236/jcc.2019.73002
    [Google Scholar]
  28. Lin Zhang Lei Zhang Xuanqin Mou ZhangD. FSIM: A feature similarity index for image quality assessment.IEEE Trans. Image Process.20112082378238610.1109/TIP.2011.210973021292594
    [Google Scholar]
  29. KovesiP. Image features from phase congruency.Videre: J. Comp. Vis. Res.199913126
    [Google Scholar]
  30. Del GrandeF. SantiniF. HerzkaD.A. AroM.R. DeanC.W. GoldG.E. CarrinoJ.A. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system.Radiographics201434121723310.1148/rg.34113513024428292
    [Google Scholar]
  31. GreeseJ. DiekhoffT. SieperJ. SchwenkeC. MakowskiM.R. PoddubnyyD. HammB. HermannK.G.A. Detection of sacroiliitis by short-tau inversion recovery and T2-weighted turbo spin echo sequences: Results from the SIMACT study.J. Rheumatol.201946437638310.3899/jrheum.17142530647167
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056251482231107072125
Loading
/content/journals/cmir/10.2174/0115734056251482231107072125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test