Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Type 2 diabetes mellitus (T2DM) and hypertension (HT) are the two most common underlying diseases worldwide, and they often coexist. The long-term existence of both may lead to left ventricular dysfunction. Therefore, evaluating the cardiac function of T2DM patients with HT is vital to guide treatment and improve prognosis. Left ventricular pressure strain loops (LVPSL) combine left ventricular strain and afterload, which can quantify left ventricular energy expenditure and detect left ventricular subclinical systolic dysfunction. Many studies have focused on myocardial work (MW) in uncomplicated T2DM patients or simple HT patients, but a few have focused on T2DM patients with HT.

Objective

The study aimed to evaluate the MW changes in T2DM patients with HT using LVPSL and to find independent related factors of MW parameters.

Methods

40 T2DM patients, 35 HT patients, 40 T2DM patients with HT (T2DM+HT group), and 35 controls were enrolled. The differences between clinical data, conventional ultrasound parameters, and MW parameters were analyzed among the four groups.

Results

The global longitudinal strain (GLS) of the T2DM group, HT group, and T2DM+HT group was lower than the control group (<0.05). The global work index (GWI) and global constructive work (GCW) in the T2DM group were lower than other groups (<0.05). The GWI of the HT group was higher than other groups (<0.05), while GCW was only higher than the T2DM group and T2DM+HT group (<0.05). The GWI and GCW of the T2DM+HT group were higher than the T2DM group and were lower than the HT group0.05), while there was no significant difference with the control group. HT group and T2DM+HT group had higher global work waste (GWW) (<0.05). The global work efficiency (GWE) of the T2DM+HT group was lower than other groups (<0.05). Systolic blood pressure (SBP) and glycosylated hemoglobin (HbA1c) were independent factors of each MW parameter.

Conclusion

LVPSL can recognize left ventricular subclinical systolic dysfunction early in patients with T2DM and HT. Compared to simple T2DM or HT, the combination of T2DM and HT had greater damage to left ventricular systolic function. SBP and HbA1c are two factors that have a considerable impact on MW parameters. The impact of afterload on MW parameters should be paid more attention to.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056232747231027114359
2024-01-01
2025-10-28
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056232747.html?itemId=/content/journals/cmir/10.2174/0115734056232747231027114359&mimeType=html&fmt=ahah

References

  1. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  2. MillsK.T. StefanescuA. HeJ. The global epidemiology of hypertension.Nat. Rev. Nephrol.202016422323710.1038/s41581‑019‑0244‑232024986
    [Google Scholar]
  3. PetrieJ.R. GuzikT.J. TouyzR.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms.Can. J. Cardiol.201834557558410.1016/j.cjca.2017.12.00529459239
    [Google Scholar]
  4. ColosiaA. KhanS. PalenciaR. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review.Diabetes Metab. Syndr. Obes.2013632733810.2147/DMSO.S5132524082791
    [Google Scholar]
  5. LiX. WangJ. ShenX. AnY. GongQ. LiH. ZhangB. ShuaiY. ChenY. HuY. LiG. Higher blood pressure predicts diabetes and enhances long‐term risk of cardiovascular disease events in individuals with impaired glucose tolerance: Twenty‐three‐year follow‐up of the Daqing diabetes prevention study.J. Diabetes201911759359810.1111/1753‑0407.1288730556339
    [Google Scholar]
  6. AhmadF.S. NingH. RichJ.D. YancyC.W. Lloyd-JonesD.M. WilkinsJ.T. Hypertension, obesity, diabetes, and heart failure–free survival.JACC Heart Fail.201641291191910.1016/j.jchf.2016.08.00127908389
    [Google Scholar]
  7. El-AtatF. McFarlaneS.I. SowersJ.R. Diabetes, hypertension, and cardiovascular derangements: Pathophysiology and management.Curr. Hypertens. Rep.20046321522310.1007/s11906‑004‑0072‑y15128475
    [Google Scholar]
  8. ChenG. McAlisterF.A. WalkerR.L. HemmelgarnB.R. CampbellN.R.C. Cardiovascular outcomes in framingham participants with diabetes: The importance of blood pressure.Hypertension201157589189710.1161/HYPERTENSIONAHA.110.16244621403089
    [Google Scholar]
  9. HubertA. Le RolleV. LeclercqC. GalliE. SamsetE. CassetC. MaboP. HernandezA. DonalE. Estimation of myocardial work from pressure–strain loops analysis: An experimental evaluation.Eur. Heart J. Cardiovasc. Imaging201819121372137910.1093/ehjci/jey02429529181
    [Google Scholar]
  10. RussellK. EriksenM. AabergeL. WilhelmsenN. SkulstadH. RemmeE.W. HaugaaK.H. OpdahlA. FjeldJ.G. GjesdalO. EdvardsenT. SmisethO.A. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: A non-invasive index of myocardial work.Eur. Heart J.201233672473310.1093/eurheartj/ehs01622315346
    [Google Scholar]
  11. IlardiF. D’AndreaA. D’AscenziF. BanderaF. BenfariG. EspositoR. MalagoliA. MandoliG.E. SantoroC. RussoV. CrisciM. EspositoG. CameliM. Myocardial work by echocardiography: Principles and applications in clinical practice.J. Clin. Med.20211019452110.3390/jcm1019452134640537
    [Google Scholar]
  12. LiaoL. ShiB. DingZ. ChenL. DongF. LiJ. ZhongY. XuJ. Echocardiographic study of myocardial work in patients with type 2 diabetes mellitus.BMC Cardiovasc. Disord.20222215910.1186/s12872‑022‑02482‑335172745
    [Google Scholar]
  13. WangT. LiL. HuangJ. FanL. Assessment of subclinical left ventricle myocardial dysfunction using global myocardial work in type 2 diabetes mellitus patients with preserved left ventricle ejection fraction.Diabetol. Metab. Syndr.20221411710.1186/s13098‑021‑00781‑x35090548
    [Google Scholar]
  14. HuangD. CuiC. ZhengQ. LiY. LiuY. HuY. WangY. LiuR. LiuL. Quantitative analysis of myocardial work by non-invasive left ventricular pressure-strain loop in patients with type 2 diabetes mellitus.Front. Cardiovasc. Med.2021873333910.3389/fcvm.2021.73333934660736
    [Google Scholar]
  15. TadicM. CuspidiC. PencicB. VukomanovicV. TaddeiS. GrassiG. CelicV. Association between myocardial work and functional capacity in patients with arterial hypertension: An echocardiographic study.Blood Press.202130318819510.1080/08037051.2021.190226733769171
    [Google Scholar]
  16. JaglanA. RoemerS. Perez MorenoA.C. KhandheriaB.K. Myocardial work in Stage 1 and 2 hypertensive patients.Eur. Heart J. Cardiovasc. Imaging202122774475010.1093/ehjci/jeab04333693608
    [Google Scholar]
  17. TadicM. CuspidiC. PencicB. GrassiG. CelicV. Myocardial work in hypertensive patients with and without diabetes: An echocardiographic study.J. Clin. Hypertens.202022112121212710.1111/jch.1405332966690
    [Google Scholar]
  18. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021.Diabetes Care202144Suppl. 1S15S3310.2337/dc21‑S00233298413
    [Google Scholar]
  19. National Institute for Health and Care Excellence: Guidelines.Hypertension in adults: diagnosis and management.LondonNational Institute for Health and Care Excellence (NICE)2022
    [Google Scholar]
  20. RawshaniA. RawshaniA. FranzénS. SattarN. EliassonB. SvenssonA.M. ZetheliusB. MiftarajM. McGuireD.K. RosengrenA. GudbjörnsdottirS. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes.N. Engl. J. Med.2018379763364410.1056/NEJMoa180025630110583
    [Google Scholar]
  21. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up.Diabetes Care201639568669310.2337/dc15‑199026861924
    [Google Scholar]
  22. Echouffo-TcheuguiJ.B. ShengS. DeVoreA.D. MatsouakaR.A. HernandezA.F. YancyC.W. HeidenreichP.A. BhattD.L. FonarowG.C. Glycated hemoglobin and outcomes of heart failure (from Get With the Guidelines-Heart Failure).Am. J. Cardiol.2019123461862610.1016/j.amjcard.2018.11.02330553509
    [Google Scholar]
  23. ÖzerP.K. GövdeliE.A. EnginB. AtıcıA. BaykızD. OrtaH. DemirtakanZ.G. EmetS. ElitokA. TayyareciY. UmmanB. BilgeA.K. BuğraZ. Role of global longitudinal strain in discriminating variant forms of left ventricular hypertrophy and predicting mortality.Anatol. J. Cardiol.2021251286387110.5152/AnatolJCardiol.2021.2194034866580
    [Google Scholar]
  24. PavlouD.I. PaschouS.A. AnagnostisP. SpartalisM. SpartalisE. VryonidouA. TentolourisN. SiasosG. Hypertension in patients with type 2 diabetes mellitus: Targets and management.Maturitas2018112717710.1016/j.maturitas.2018.03.01329704920
    [Google Scholar]
  25. ManganaroR. MarchettaS. DulgheruR. IlardiF. SugimotoT. RobinetS. CiminoS. GoY.Y. BernardA. KacharavaG. AthanassopoulosG.D. BaroneD. BaroniM. CardimN. HagendorffA. HristovaK. López-FernándezT. de la MorenaG. PopescuB.A. PenickaM. OzyigitT. Rodrigo CarboneroJ.D. van de VeireN. Von BardelebenR.S. VinereanuD. ZamoranoJ.L. RoscaM. CalinA. MoonenM. MagneJ. CosynsB. GalliE. DonalE. CarerjS. ZitoC. SantoroC. GalderisiM. BadanoL.P. LangR.M. OuryC. LancellottiP. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study.Eur. Heart J. Cardiovasc. Imaging201920558259010.1093/ehjci/jey18830590562
    [Google Scholar]
  26. LiQ. WangH. FengH. WuT. YangY. GaoD. SunL. Afterload-related reference values for myocardial work indices.Cardiovasc. Ultrasound20211912410.1186/s12947‑021‑00253‑234167526
    [Google Scholar]
  27. LiX. LiuQ. BaoW. LiM. ZhangY. WanX. ZhangM. Impact of blood pressure changes on myocardial work indices in hypertensive patients in a day.J. Clin. Hypertens.202224131410.1111/jch.1437934889503
    [Google Scholar]
  28. WangR. TianT. LiS. LengX. TianJ. Assessment of left ventricular global myocardial work in patients with different degrees of coronary artery stenosis by pressure-strain loops analysis.Ultrasound Med. Biol.2021471334210.1016/j.ultrasmedbio.2020.09.01733109380
    [Google Scholar]
  29. QinZ. LiuD. YouX. DuanQ. ZhaoY. Evaluating impact of pulse pressure on indexes of myocardial work by speckle-tracking echocardiography in normotensive, prehypertensive and newly diagnosed hypertensive patients.Int. J. Gen. Med.2022151933194310.2147/IJGM.S35162835228817
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056232747231027114359
Loading
/content/journals/cmir/10.2174/0115734056232747231027114359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test