Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Autism spectrum disorder (ASD) consists of neurological development disorders that manifest before three years of age and affect social interactions, markedly restricting range of interests and activities, often associated with some degree of intellectual disability. Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are non-invasive imaging tools to investigate the function of the brain . SPECT and PET studies exploring rCBF and brain glucose metabolism in patients with ASD have been performed, providing important insights into the brain regions involved in ASD. Abnormalities in serotonergic, dopaminergic, GABAergic, cholinergic, and glutamatergic systems have been suggested to contribute to the observed distorted brain circuitry associated with ASD. However, the specificity of such abnormalities needs to be fully clarified because schizophrenia and other psychiatric diseases have been shown to present with comparable changes in neurotransmitter systems. Neuroinflammation could also play a role in the development of autism. Therefore, ASD is a complicated process involving a number of factors. It is mandatory to perform more research studies to determine the molecular cornerstone of ASD and to improve our comprehension of the clinical correlates of ASD.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056232408230927072959
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056232408.html?itemId=/content/journals/cmir/10.2174/0115734056232408230927072959&mimeType=html&fmt=ahah

References

  1. LaiM.C. LombardoM.V. ChakrabartiB. Baron-CohenS. Subgrouping the autism “spectrum”: Reflections on DSM-5.PLoS Biol.2013114e100154410.1371/journal.pbio.100154423630456
    [Google Scholar]
  2. VecchioneR PicarielloN Low pressure hyperbaric oxygen therapy in autism spectrum disorders: A prospective, randomized study of 30 children.Int. J. Curr. Res.20168053058730598
    [Google Scholar]
  3. MazzoneL. PostorinoV. ValeriG. VicariS. Catatonia in patients with autism: Prevalence and management.CNS Drugs201428320521510.1007/s40263‑014‑0143‑924504828
    [Google Scholar]
  4. AmaralD.G. Examining the causes of autism.Cerebrum20172017cer-01cer-1728698772
    [Google Scholar]
  5. BillB.R. GeschwindD.H. Genetic advances in autism: Heterogeneity and convergence on shared pathways.Curr. Opin. Genet. Dev.200919327127810.1016/j.gde.2009.04.00419477629
    [Google Scholar]
  6. GeschwindD.H. LevittP. Autism spectrum disorders: Developmental disconnection syndromes.Curr. Opin. Neurobiol.200717110311110.1016/j.conb.2007.01.00917275283
    [Google Scholar]
  7. CourchesneE. PierceK. SchumannC.M. RedcayE. BuckwalterJ.A. KennedyD.P. MorganJ. Mapping early brain development in autism.Neuron200756239941310.1016/j.neuron.2007.10.01617964254
    [Google Scholar]
  8. ChiuS. WegelinJ.A. BlankJ. JenkinsM. DayJ. HesslD. TassoneF. HagermanR. Early acceleration of head circumference in children with fragile x syndrome and autism.J. Dev. Behav. Pediatr.2007281313510.1097/01.DBP.0000257518.60083.2d17353729
    [Google Scholar]
  9. SüdhofT.C. Neuroligins and neurexins link synaptic function to cognitive disease.Nature2008455721590391110.1038/nature0745618923512
    [Google Scholar]
  10. ZürcherN.R. BhanotA. McDougleC.J. HookerJ.M. A systematic review of molecular imaging (PET and SPECT) in autism spectrum disorder: Current state and future research opportunities.Neurosci. Biobehav. Rev.201552567310.1016/j.neubiorev.2015.02.00225684726
    [Google Scholar]
  11. LiX. ZhangK. HeX. ZhouJ. JinC. ShenL. GaoY. TianM. ZhangH. Structural, functional, and molecular imaging of autism spectrum disorder.Neurosci. Bull.20213771051107110.1007/s12264‑021‑00673‑033779890
    [Google Scholar]
  12. GordonI. Vander WykB.C. BennettR.H. CordeauxC. LucasM.V. EilbottJ.A. Zagoory-SharonO. LeckmanJ.F. FeldmanR. PelphreyK.A. Oxytocin enhances brain function in children with autism.Proc. Natl. Acad. Sci. USA201311052209532095810.1073/pnas.131285711024297883
    [Google Scholar]
  13. RubinsteinM. DenaysR. HamH.R. PiepszA. VanPachterbekeT. HaumontD. NoëlP. Functional imaging of brain maturation in humans using iodine-123 iodoamphetamine and SPECT.J. Nucl. Med.19893012198219852585100
    [Google Scholar]
  14. BoddaertN. ZilboviciusM. Functional neuroimaging and childhood autism.Pediatr. Radiol.20023211710.1007/s00247‑001‑0570‑x11819054
    [Google Scholar]
  15. GaluskaL. SzakállS.Jr EmriM. OláhR. VargaJ. GaraiI. KollárJ. PatakiI. TrónL. PET and SPECT scans in autistic children.Orv. Hetil.200214321Suppl. 31302130412077922
    [Google Scholar]
  16. SasakiM. SPECT findings in autism spectrum disorders and medically refractory seizures.Epilepsy & behavior : E&B.2015471677110.1016/j.yebeh.2014.10.033
    [Google Scholar]
  17. ZilboviciusM. BoddaertN. BelinP. PolineJ.B. RemyP. ManginJ.F. ThivardL. BarthélémyC. SamsonY. Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography.Am. J. Psychiatry2000157121988199310.1176/appi.ajp.157.12.198811097965
    [Google Scholar]
  18. ZilboviciusM. GarreauB. SamsonY. RemyP. BarthélémyC. SyrotaA. LelordG. Delayed maturation of the frontal cortex in childhood autism.Am. J. Psychiatry1995152224825210.1176/ajp.152.2.2487840359
    [Google Scholar]
  19. OhnishiT. MatsudaH. HashimotoT. KunihiroT. NishikawaM. UemaT. SasakiM. Abnormal regional cerebral blood flow in childhood autism.Brain200012391838184410.1093/brain/123.9.183810960047
    [Google Scholar]
  20. WilcoxJ. TsuangM.T. LedgerE. AlgeoJ. SchnurrT. Brain perfusion in autism varies with age.Neuropsychobiology2002461131610.1159/00006357012207141
    [Google Scholar]
  21. Carina GillbergI. BjureJ. UvebrantP. VestergrenE. GillbergC. SPECT (Single Photon Emission Computed Tomography) in 31 children and adolescents with autism and autistic-like conditions.Eur. Child Adolesc. Psychiatry199321505910.1007/BF0209883021590529
    [Google Scholar]
  22. ItoH. MoriK. HashimotoT. MiyazakiM. HoriA. KagamiS. KurodaY. Findings of brain 99mTc-ECD SPECT in high-functioning autism-3-dimensional stereotactic ROI template analysis of brain SPECT-.J. Med. Invest.2005521-2495610.2152/jmi.52.4915751273
    [Google Scholar]
  23. YangW.H. JingJ. XiuL.J. ChengM.H. WangX. BaoP. WangQ.X. Regional cerebral blood flow in children with autism spectrum disorders: A quantitative ⁹⁹mTc-ECD brain SPECT study with statistical parametric mapping evaluation.Chin. Med. J.201112491362136621740749
    [Google Scholar]
  24. RyuY.H. LeeJ.D. YoonP.H. KimD.I. LeeH.B. ShinY.J. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: Comparison with findings on magnetic resonance imaging.Eur. J. Nucl. Med. Mol. Imaging199926325325910.1007/s00259005038510079316
    [Google Scholar]
  25. StarksteinS.E. VazquezS. VrancicD. NanclaresV. ManesF. PivenJ. PlebstC. SPECT findings in mentally retarded autistic individuals.J. Neuropsychiatry Clin. Neurosci.200012337037510.1176/jnp.12.3.37010956571
    [Google Scholar]
  26. HashimotoT. SasakiM. FukumizuM. HanaokaS. SugaiK. MatsudaH. Single-photon emission computed tomography of the brain in autism: effect of the developmental level.Pediatr. Neurol.200023541642010.1016/S0887‑8994(00)00224‑111118797
    [Google Scholar]
  27. BurroniL. OrsiA. MontiL. HayekY. RocchiR. VattimoA.G. Regional cerebral blood flow in childhood autism: A SPET study with SPM evaluation.Nucl. Med. Commun.200829215015610.1097/MNM.0b013e3282f1bb8e18094637
    [Google Scholar]
  28. MountzJ.M. TolbertL.C. LillD.W. KatholiC.R. LiuH.G. Functional deficits in autistic disorder: characterization by technetium-99m-HMPAO and SPECT.J. Nucl. Med.1995367115611627790938
    [Google Scholar]
  29. HazlettE.A. BuchsbaumM.S. HsiehP. HaznedarM.M. PlatholiJ. LiCalziE.M. CartwrightC. HollanderE. Regional glucose metabolism within cortical Brodmann areas in healthy individuals and autistic patients.Neuropsychobiology200449311512510.1159/00007671915034226
    [Google Scholar]
  30. HaznedarM.M. BuchsbaumM.S. WeiT.C. HofP.R. CartwrightC. BienstockC.A. HollanderE. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging.Am. J. Psychiatry2000157121994200110.1176/appi.ajp.157.12.199411097966
    [Google Scholar]
  31. HeroldS. FrackowiakR.S.J. Le CouteurA. RutterM. HowlinP. Cerebral blood flow and metabolism of oxygen and glucose in young autistic adults.Psychol. Med.198818482383110.1017/S00332917000097523270827
    [Google Scholar]
  32. RumseyJ.M. DuaraR. GradyC. RapoportJ.L. MargolinR.A. RapoportS.I. CutlerN.R. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography.Arch. Gen. Psychiatry198542544845510.1001/archpsyc.1985.017902800260033872650
    [Google Scholar]
  33. SiegelB.V.Jr AsarnowR. TanguayP. CallJ.D. AbelL. HoA. LottI. BuchsbaumM.S. Regional cerebral glucose metabolism and attention in adults with a history of childhood autism.J. Neuropsychiatry Clin. Neurosci.19924440641410.1176/jnp.4.4.4061422167
    [Google Scholar]
  34. BrunelleF. BoddaertN. ZilboviciusM. Autism and brain imaging.Bull. Acad Natl. Med.2009193228729710.1016/S0001‑4079(19)32582‑819718886
    [Google Scholar]
  35. JannK. HernandezL.M. Beck-PancerD. McCarronR. SmithR.X. DaprettoM. WangD.J.J. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder.Brain Behav.201559e0035810.1002/brb3.35826445698
    [Google Scholar]
  36. BuchsbaumM.S. SiegelB.V.Jr WuJ.C. HazlettE. SicotteN. HaierR. TanguayP. AsarnowR. CadoretteT. DonoghueD. Lagunas-SolarM. LottI. PaekJ. SabaleskyD. Brief report: Attention performance in autism and regional brain metabolic rate assessed by positron emission tomography.J. Autism Dev. Disord.199222111512510.1007/BF010464071592761
    [Google Scholar]
  37. HaznedarM.M. BuchsbaumM.S. HazlettE.A. LiCalziE.M. CartwrightC. HollanderE. Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders.Am. J. Psychiatry200616371252126310.1176/ajp.2006.163.7.125216816232
    [Google Scholar]
  38. De VolderA. BolA. MichelC. CongneauM. GoffinetA.M. Brain glucose metabolism in children with the autistic syndrome: Positron tomography analysis.Brain Dev.19879658158710.1016/S0387‑7604(87)80089‑X3502233
    [Google Scholar]
  39. SchifterT. HoffmanJ.M. HattenH.P.Jr HansonM.W. ColemanR.E. DeLongG.R. Neuroimaging in infantile autism.J. Child Neurol.19949215516110.1177/0883073894009002108006366
    [Google Scholar]
  40. ChuganiH.T. da SilvaE. ChuganiD.C. Infantile spasms: III. Prognostic implications of bitemporal hypometabolism on positron emission tomography.Ann. Neurol.199639564364910.1002/ana.4103905148619550
    [Google Scholar]
  41. ChuganiD.C. MuzikO. RothermelR. BehenM. ChakrabortyP. MangnerT. Da SilvaE.A. ChuganiH.T. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys.Ann. Neurol.199742466666910.1002/ana.4104204209382481
    [Google Scholar]
  42. ChandanaS.R. BehenM.E. JuhászC. MuzikO. RothermelR.D. MangnerT.J. ChakrabortyP.K. ChuganiH.T. ChuganiD.C. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism.Int. J. Dev. Neurosci.2005232-317118210.1016/j.ijdevneu.2004.08.00215749243
    [Google Scholar]
  43. BoddaertN. BarthélémyC. PolineJ.B. SamsonY. BrunelleF. ZilboviciusM. Autism: Functional brain mapping of exceptional calendar capacity.Br. J. Psychiatry20051871838610.1192/bjp.187.1.8315994576
    [Google Scholar]
  44. Gendry MeresseI. ZilboviciusM. BoddaertN. RobelL. PhilippeA. SfaelloI. LaurierL. BrunelleF. SamsonY. MourenM.C. ChabaneN. Autism severity and temporal lobe functional abnormalities.Ann. Neurol.200558346646910.1002/ana.2059716130096
    [Google Scholar]
  45. ChuganiH.T. JuhászC. BehenM.E. OndersmaR. MuzikO. Autism with facial port-wine stain: A new syndrome?Pediatr. Neurol.200737319219910.1016/j.pediatrneurol.2007.05.00517765807
    [Google Scholar]
  46. DuchesnayE. CachiaA. BoddaertN. ChabaneN. ManginJ.F. MartinotJ.L. BrunelleF. ZilboviciusM. Feature selection and classification of imbalanced datasets.Neuroimage20115731003101410.1016/j.neuroimage.2011.05.01121600290
    [Google Scholar]
  47. KadwaR.A. SahuJ.K. SinghiP. MalhiP. MittalB.R. Prevalence and characteristics of sensory processing abnormalities and its correlation with FDG-PET findings in children with autism.Indian J. Pediatr.201986111036104210.1007/s12098‑019‑03061‑931612302
    [Google Scholar]
  48. ZilboviciusM. GarreauB. TzourioN. MazoyerB. BruckB. MartinotJ.L. RaynaudC. SamsonY. SyrotaA. LelordG. Regional cerebral blood flow in childhood autism: a SPECT study.Am. J. Psychiatry1992149792493010.1176/ajp.149.7.9241609873
    [Google Scholar]
  49. KayaM. KarasalihoğluS. ÜstünF. GültekinA. ÇermikT.F. FazlıoğluY. TüreM. YiğitbaşıÖ.N. BerkardaŞ. The relationship between 99mTc-HMPAO brain SPECT and the scores of real life rating scale in autistic children.Brain Dev.2002242778110.1016/S0387‑7604(02)00006‑211891096
    [Google Scholar]
  50. SteinerC.E. GuerreiroM.M. Marques-de-FariaA.P. Genetic and neurological evaluation in a sample of individuals with pervasive developmental disorders.Arq. Neuropsiquiatr.2003612A17618010.1590/S0004‑282X200300020000312806492
    [Google Scholar]
  51. DegirmenciB. MiralS. KayaG.C. İyilikçiL. ArslanG. BaykaraA. Evrenİ. DurakH. Technetium-99m HMPAO brain SPECT in autistic children and their families.Psychiatry Res. Neuroimaging2008162323624310.1016/j.pscychresns.2004.12.00518302983
    [Google Scholar]
  52. SasakiM. NakagawaE. SugaiK. ShimizuY. HattoriA. NonodaY. SatoN. Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy.Brain Dev.201032977678210.1016/j.braindev.2010.06.00320594786
    [Google Scholar]
  53. GuptaS.K. RatnamB.V. Cerebral perfusion abnormalities in children with autism and mental retardation: A segmental quantitative SPECT study.Indian Pediatr.200946216116419242035
    [Google Scholar]
  54. Xiao-MianS. JingY. ChongxunaZ. MinL. Hui-XingD. Study of 99mTc-TRODAT-1 imaging on human brain with children autism by single photon emission computed tomography.Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference20052005532830
    [Google Scholar]
  55. MakkonenI. RiikonenR. KokkiH. AiraksinenM.M. KuikkaJ.T. Serotonin and dopamine transporter binding in children with autism determined by SPECT.Dev. Med. Child Neurol.200850859359710.1111/j.1469‑8749.2008.03027.x18754896
    [Google Scholar]
  56. MakkonenI. RiikonenR. KuikkaJ.T. KokkiH. BresslerJ.P. MarshallC. KaufmannW.E. Brain derived neurotrophic factor and serotonin transporter binding as markers of clinical response to fluoxetine therapy in children with autism.J. Pediatr. Neurol.2011911829056860
    [Google Scholar]
  57. MoriT. MoriK. FujiiE. TodaY. MiyazakiM. HaradaM. HashimotoT. KagamiS. Evaluation of the GABAergic nervous system in autistic brain: 123I-iomazenil SPECT study.Brain Dev.201234864865410.1016/j.braindev.2011.10.00722099869
    [Google Scholar]
  58. ZhaoZ. JiaS. HuS. SunW. Evaluating the effectiveness of electro-acupuncture as a treatment for childhood autism using single photon emission computed tomography.Chin. J. Integr. Med.2014201192310.1007/s11655‑014‑1680‑224374754
    [Google Scholar]
  59. YangY. AnS. LiuY. GuoX.X. GaoL. WeiJ.F. XuT.R. Novel serotonin receptor 2 (5-HT 2 R) agonists and antagonists: A patent review (2004-2014).Expert Opin. Ther. Pat.20162618910610.1517/13543776.2016.111325726609882
    [Google Scholar]
  60. SchainR.J. FreedmanD.X. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children.J. Pediatr.196158331532010.1016/S0022‑3476(61)80261‑813747230
    [Google Scholar]
  61. HollanderE. KwonJ. WeillerF. CohenL. SteinD.J. DeCariaC. LiebowitzM. SimeonD. Serotonergic function in social phobia: Comparison to normal control and obsessive–compulsive disorder subjects.Psychiatry Res.199879321321710.1016/S0165‑1781(98)00041‑99704868
    [Google Scholar]
  62. McDougleC.J. NaylorS.T. CohenD.J. VolkmarF.R. HeningerG.R. PriceL.H. A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder.Arch. Gen. Psychiatry199653111001100810.1001/archpsyc.1996.018301100370058911223
    [Google Scholar]
  63. ChuganiD.C. Neuroimaging and neurochemistry of autism.Pediatr. Clin. North Am.20125916373, x10.1016/j.pcl.2011.10.00222284793
    [Google Scholar]
  64. ChuganiD.C. SundramB.S. BehenM. LeeM.L. MooreG.J. Evidence of altered energy metabolism in autistic children.Prog. Neuropsychopharmacol. Biol. Psychiatry199923463564110.1016/S0278‑5846(99)00022‑610390722
    [Google Scholar]
  65. BeversdorfD.Q. NordgrenR.E. BonabA.A. FischmanA.J. WeiseS.B. DoughertyD.D. FelopulosG.J. ZhouF.C. BaumanM.L. 5-HT2 receptor distribution shown by [18F] setoperone PET in high-functioning autistic adults.J. Neuropsychiatry Clin. Neurosci.201224219119710.1176/appi.neuropsych.1108020222772667
    [Google Scholar]
  66. MurphyD.G.M. DalyE. SchmitzN. ToalF. MurphyK. CurranS. ErlandssonK. EerselsJ. KerwinR. EllP. TravisM. Cortical serotonin 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: An in vivo SPECT study.Am. J. Psychiatry2006163593493610.1176/ajp.2006.163.5.93416648340
    [Google Scholar]
  67. NakamuraK. SekineY. OuchiY. TsujiiM. YoshikawaE. FutatsubashiM. TsuchiyaK.J. SugiharaG. IwataY. SuzukiK. MatsuzakiH. SudaS. SugiyamaT. TakeiN. MoriN. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.Arch. Gen. Psychiatry2010671596810.1001/archgenpsychiatry.2009.13720048223
    [Google Scholar]
  68. GirgisR.R. SlifsteinM. XuX. FrankleW.G. AnagnostouE. WassermanS. PepaL. KolevzonA. Abi-DarghamA. LaruelleM. HollanderE. The 5-HT 2A receptor and serotonin transporter in Asperger’s Disorder: A PET study with [ 11 C]MDL 100907 and [ 11 C]DASB.Psychiatry Res. Neuroimaging2011194323023410.1016/j.pscychresns.2011.04.00722079057
    [Google Scholar]
  69. ChuganiD.C. MuzikO. BehenM. RothermelR. JanisseJ.J. LeeJ. ChuganiH.T. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children.Ann. Neurol.199945328729510.1002/1531‑8249(199903)45:3<287::AID‑ANA3>3.0.CO;2‑910072042
    [Google Scholar]
  70. ChevallierC. KohlsG. TroianiV. BrodkinE.S. SchultzR.T. The social motivation theory of autism.Trends Cogn. Sci.201216423123910.1016/j.tics.2012.02.00722425667
    [Google Scholar]
  71. GadowK.D. RoohiJ. DeVincentC.J. HatchwellE. Association of ADHD, tics, and anxiety with dopamine transporter ( DAT1 ) genotype in autism spectrum disorder.J. Child Psychol. Psychiatry200849121331133810.1111/j.1469‑7610.2008.01952.x19120712
    [Google Scholar]
  72. ErnstM. ZametkinA.J. MatochikJ.A. PascualvacaD. CohenR.M. Low medial prefrontal dopaminergic activity in autistic children.Lancet1997350907863810.1016/S0140‑6736(05)63326‑09288051
    [Google Scholar]
  73. DavidsonR.J. PutnamK.M. LarsonC.L. Dysfunction in the neural circuitry of emotion regulation-a possible prelude to violence.Science2000289547959159410.1126/science.289.5479.59110915615
    [Google Scholar]
  74. OwensD.F. KriegsteinA.R. Is there more to gaba than synaptic inhibition?Nat. Rev. Neurosci.20023971572710.1038/nrn91912209120
    [Google Scholar]
  75. RubensteinJ.L.R. MerzenichM.M. Model of autism: increased ratio of excitation/inhibition in key neural systems.Genes Brain Behav.20032525526710.1034/j.1601‑183X.2003.00037.x14606691
    [Google Scholar]
  76. PizzarelliR. CherubiniE. Alterations of GABAergic signaling in autism spectrum disorders.Neural Plast.2011201111210.1155/2011/29715321766041
    [Google Scholar]
  77. FungL.K. FloresR.E. GuM. SunK.L. JamesD. SchuckR.K. JoB. ParkJ.H. LeeB.C. JungJ.H. KimS.E. SaggarM. SacchetM.D. WarnockG. KhalighiM.M. SpielmanD. ChinF.T. HardanA.Y. Thalamic and prefrontal GABA concentrations but not GABAA receptor densities are altered in high-functioning adults with autism spectrum disorder.Mol. Psychiatry20212651634164610.1038/s41380‑020‑0756‑y32376999
    [Google Scholar]
  78. StahlL. PryR. Joint attention and set-shifting in young children with autism.Autism20026438339610.1177/136236130200600400512540129
    [Google Scholar]
  79. LeeM. Martin-RuizC. GrahamA. CourtJ. JarosE. PerryR. IversenP. BaumanM. PerryE. Nicotinic receptor abnormalities in the cerebellar cortex in autism.Brain200212571483149510.1093/brain/awf16012076999
    [Google Scholar]
  80. PerryE.K. LeeM.L.W. Martin-RuizC.M. CourtJ.A. VolsenS.G. MerritJ. FollyE. IversenP.E. BaumanM.L. PerryR.H. WenkG.L. Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain.Am. J. Psychiatry200115871058106610.1176/appi.ajp.158.7.105811431227
    [Google Scholar]
  81. ChezM.G. AimonovitchM. BuchananT. MrazekS. TrembR.J. Treating autistic spectrum disorders in children: utility of the cholinesterase inhibitor rivastigmine tartrate.J. Child Neurol.200419316516915119476
    [Google Scholar]
  82. HardanA.Y. MinshewN.J. MallikarjuhnM. KeshavanM.S. Brain volume in autism.J. Child Neurol.200116642142410.1177/08830738010160060711417608
    [Google Scholar]
  83. NiederhoferH. StaffenW. MairA. Galantamine may be effective in treating autistic disorder.BMJ200232573771422a142210.1136/bmj.325.7377.1422/a12480867
    [Google Scholar]
  84. NicolsonR. Craven-ThussB. SmithJ. A prospective, open-label trial of galantamine in autistic disorder.J. Child Adolesc. Psychopharmacol.200616562162910.1089/cap.2006.16.62117069550
    [Google Scholar]
  85. KarvatG KimchiT Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism.Neuropsychopharmacology20143948314010.1038/npp.2013.274
    [Google Scholar]
  86. SuzukiK. SugiharaG. OuchiY. NakamuraK. TsujiiM. FutatsubashiM. IwataY. TsuchiyaK.J. MatsumotoK. TakebayashiK. WakudaT. YoshiharaY. SudaS. KikuchiM. TakeiN. SugiyamaT. IrieT. MoriN. Reduced acetylcholinesterase activity in the fusiform gyrus in adults with autism spectrum disorders.Arch. Gen. Psychiatry201168330631310.1001/archgenpsychiatry.2011.421383265
    [Google Scholar]
  87. LeblondC.S. NavaC. PolgeA. GauthierJ. HuguetG. LumbrosoS. GiulianoF. StordeurC. DepienneC. MouzatK. PintoD. HoweJ. LemièreN. DurandC.M. GuibertJ. EyE. ToroR. PeyreH. MathieuA. AmsellemF. RastamM. GillbergI.C. RappoldG.A. HoltR. MonacoA.P. MaestriniE. GalanP. HeronD. JacquetteA. AfenjarA. RastetterA. BriceA. DevillardF. AssoulineB. LaffargueF. LespinasseJ. ChiesaJ. RivierF. BonneauD. RegnaultB. ZelenikaD. DelepineM. LathropM. SanlavilleD. Schluth-BolardC. EderyP. PerrinL. TabetA.C. SchmeisserM.J. BoeckersT.M. ColemanM. SatoD. SzatmariP. SchererS.W. RouleauG.A. BetancurC. LeboyerM. GillbergC. DelormeR. BourgeronT. Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments.PLoS Genet.2014109e100458010.1371/journal.pgen.100458025188300
    [Google Scholar]
  88. FatemiS.H. WongD.F. BrašićJ.R. KuwabaraH. MathurA. FolsomT.D. JacobS. RealmutoG.M. PardoJ.V. LeeS. Metabotropic glutamate receptor 5 tracer [18F]-FPEB displays increased binding potential in postcentral gyrus and cerebellum of male individuals with autism: A pilot PET study.Cerebellum Ataxias201851310.1186/s40673‑018‑0082‑129449954
    [Google Scholar]
  89. FatemiS.H. AldingerK.A. AshwoodP. BaumanM.L. BlahaC.D. BlattG.J. ChauhanA. ChauhanV. DagerS.R. DicksonP.E. EstesA.M. GoldowitzD. HeckD.H. KemperT.L. KingB.H. MartinL.A. MillenK.J. MittlemanG. MosconiM.W. PersicoA.M. SweeneyJ.A. WebbS.J. WelshJ.P. Consensus paper: Pathological role of the cerebellum in autism.Cerebellum201211377780710.1007/s12311‑012‑0355‑922370873
    [Google Scholar]
  90. KreislW.C. FujitaM. FujimuraY. KimuraN. JenkoK.J. KannanP. HongJ. MorseC.L. ZoghbiS.S. GladdingR.L. JacobsonS. OhU. PikeV.W. InnisR.B. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker.Neuroimage20104942924293210.1016/j.neuroimage.2009.11.05619948230
    [Google Scholar]
  91. NotterT. CoughlinJ.M. SawaA. MeyerU. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry.Mol. Psychiatry2018231364710.1038/mp.2017.23229203847
    [Google Scholar]
  92. ZürcherN.R. LoggiaM.L. MullettJ.E. TsengC. BhanotA. RicheyL. HightowerB.G. WuC. ParmarA.J. ButterfieldR.I. DuboisJ.M. ChondeD.B. Izquierdo-GarciaD. WeyH.Y. CatanaC. HadjikhaniN. McDougleC.J. HookerJ.M. [11C]PBR28 MR–PET imaging reveals lower regional brain expression of translocator protein (TSPO) in young adult males with autism spectrum disorder.Mol. Psychiatry20212651659166910.1038/s41380‑020‑0682‑z32076115
    [Google Scholar]
  93. InselT.R. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior.Neuron201065676877910.1016/j.neuron.2010.03.00520346754
    [Google Scholar]
  94. AjramL.A. HorderJ. MendezM.A. GalanopoulosA. BrennanL.P. WichersR.H. RobertsonD.M. MurphyC.M. ZinkstokJ. IvinG. HeasmanM. MeekD. TricklebankM.D. BarkerG.J. LythgoeD.J. EddenR A E. WilliamsS.C. MurphyD.G.M. McAlonanG.M. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder.Transl. Psychiatry201775e113710.1038/tp.2017.10428534874
    [Google Scholar]
  95. MaximoJ.O. MurdaughD.L. O’KelleyS. KanaR.K. Changes in intrinsic local connectivity after reading intervention in children with autism.Brain Lang.2017175111710.1016/j.bandl.2017.08.00828869842
    [Google Scholar]
  96. WatanabeT. KurodaM. KuwabaraH. AokiY. IwashiroN. TatsunobuN. TakaoH. NippashiY. KawakuboY. KunimatsuA. KasaiK. YamasueH. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism.Brain2015138113400341210.1093/brain/awv24926336909
    [Google Scholar]
  97. LefevreA. MottoleseR. RedoutéJ. CostesN. Le BarsD. GeoffrayM.M. Oxytocin fails to recruit serotonergic neurotransmission in the autistic brain.Cerebral Cortex201828124169417810.1093/cercor/bhx272
    [Google Scholar]
  98. FukaiM. HirosawaT. KikuchiM. OuchiY. TakahashiT. YoshimuraY. MiyagishiY. KosakaH. YokokuraM. YoshikawaE. BunaiT. MinabeY. Oxytocin effects on emotional response to others’ faces via serotonin system in autism: A pilot study.Psychiatry Res. Neuroimaging2017267455010.1016/j.pscychresns.2017.06.01528738293
    [Google Scholar]
  99. HirosawaT KikuchiM OuchiY TakahashiT YoshimuraY KosakaH A pilot study of serotonergic modulation after long-term administration of oxytocin in autism spectrum disorder.Autism research20171058212810.1002/aur.1761
    [Google Scholar]
  100. YoungL.J. WangZ. The neurobiology of pair bonding.Nat. Neurosci.20047101048105410.1038/nn132715452576
    [Google Scholar]
  101. BuchsbaumM.S. HollanderE. Mehmet HaznedarM. TangC. Spiegel-CohenJ. WeiT.C. SolimandoA. BuchsbaumB.R. RobinsD. BienstockC. CartwrightC. MosovichS. Effect of fluoxetine on regional cerebral metabolism in autistic spectrum disorders: A pilot study.Int. J. Neuropsychopharmacol.20014211912510.1017/S146114570100228011466160
    [Google Scholar]
  102. ParkH.R. KimI.H. KangH. LeeD.S. KimB.N. KimD.G. PaekS.H. Nucleus accumbens deep brain stimulation for a patient with self-injurious behavior and autism spectrum disorder: Functional and structural changes of the brain: report of a case and review of literature.Acta Neurochir.2017159113714310.1007/s00701‑016‑3002‑227807672
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056232408230927072959
Loading
/content/journals/cmir/10.2174/0115734056232408230927072959
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Autism; Brain; Pediatrics; PET; Positron emission tomography; SPECT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test