Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Although the “conventional” autopsy is still considered the “gold standard” for the definition of the cause of death, an emerging interest in non-invasive cadaveric investigations is spreading. Among all these, the application of post-mortem magnetic resonance imaging of the heart is increasingly gaining ground in the study of sudden cardiac death.

Methods

Using the diffusion tensor imaging sequence, the present study aimed to demonstrate how through the fractional anisotropy value it is possible to qualitatively and quantitatively define sudden cardiac death, particularly in cases of sudden arrhythmic death syndrome. Four hearts were collected for the present pilot study: the first from a subject who died from a brain injury caused by a gunshot, and the other three hearts from subjects who died of sudden cardiac death. In all cases examined, the extracted hearts were hung inside a container containing 10% formalin solution and placed inside a 1.5T scanner with a 16-channel chest coil. Then, the cardiac diffusion tensor imaging sequence was performed and the quantitative maps of fractional anisotropy and apparent diffusion coefficient were obtained. After imaging analysis, the samples were processed, paraffin-embedded, and stained with hematoxylin and eosin and trichrome staining. Cases B, C, and D showed lower fractional anisotropy values than non-pathological one.

Results

Histological investigation revealed extensive areas of fibrosis and foci of contraction band necrosis in heart B, myofiber disarray and interstitial fibrosis in heart C, and findings consistent with atonic death in heart D.

Conclusion

The study aimed to demonstrate that in cases of sudden cardiac death, lower fractional anisotropy values, as already observed in clinical trials, are associated with arrhythmic heart disease or myocardial infarction. Quantitative, appreciable, and reproducible data could support such diagnoses.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/0115734056343601250123093759
2025-04-21
2025-09-12
Loading full text...

Full text loading...

/deliver/fulltext/cmim/21/1/CMIR-21-E15734056343601.html?itemId=/content/journals/cmim/10.2174/0115734056343601250123093759&mimeType=html&fmt=ahah

References

  1. ParatzE.D. RoweS.J. StubD. PflaumerA. La GercheA. A systematic review of global autopsy rates in all-cause mortality and young sudden death.Heart Rhythm202320460761310.1016/j.hrthm.2023.01.00836640854
    [Google Scholar]
  2. LattenB.G.H. KubatB. van den BrandtP.A. zur HausenA. SchoutenL.J. Cause of death and the autopsy rate in an elderly population.Virchows Arch.2023483686587210.1007/s00428‑023‑03571‑037269366
    [Google Scholar]
  3. HeinrichF. MertzK.D. GlatzelM. BeerM. KrasemannS. Using autopsies to dissect COVID-19 pathogenesis.Nat. Microbiol.20238111986199410.1038/s41564‑023‑01488‑737798476
    [Google Scholar]
  4. BertozziG. FerraraM. MaieseA. Di FazioN. DeloguG. FratiP. La RussaR. FineschiV. COVID-19 and H1N1-09: A systematic review of two pandemics with a focus on the lung at autopsy.Frontiers in Bioscience-Landmark202227618210.31083/j.fbl270618235748258
    [Google Scholar]
  5. StassiC. MondelloC. BaldinoG. CardiaL. GualnieraP. CalapaiF. SapienzaD. AsmundoA. Ventura SpagnoloE. State of the art on the role of postmortem computed tomography angiography and magnetic resonance imaging in the diagnosis of cardiac causes of death: A narrative review.Tomography20228296197310.3390/tomography802007735448711
    [Google Scholar]
  6. FineschiV. AprileA. AquilaI. ArcangeliM. AsmundoA. BacciM. CingolaniM. CipolloniL. D’ErricoS. De CasamassimiI. Di MizioG. Di PaoloM. FocardiM. FratiP. GabbrielliM. La RussaR. MaieseA. ManettiF. MartelloniM. MazzeoE. MontanaA. NeriM. PadovanoM. PinchiV. PomaraC. RicciP. SalernoM. SanturroA. ScopettiM. TestiR. TurillazziE. VacchianoG. CrivelliF. BonoldiE. FacchettiF. NebuloniM. SapinoA. Management of the corpse with suspect, probable or confirmed COVID-19 respiratory infection - Italian interim recommendations for personnel potentially exposed to material from corpses, including body fluids, in morgue structures and during autopsy practice.Pathologica20201122647732324727
    [Google Scholar]
  7. La RussaR. CatalanoC. Di SanzoM. ScopettiM. GattoV. SanturroA. ViolaR.V. PanebiancoV. FratiP. FineschiV. Postmortem computed tomography angiography (PMCTA) and traditional autopsy in cases of sudden cardiac death due to coronary artery disease: A systematic review and meta-analysis.Radiol. Med.2019124210911710.1007/s11547‑018‑0943‑y30259270
    [Google Scholar]
  8. JackowskiC. SchwendenerN. GrabherrS. PerssonA. Post-mortem cardiac 3-T magnetic resonance imaging: Visualization of sudden cardiac death?J. Am. Coll. Cardiol.201362761762910.1016/j.jacc.2013.01.08923563129
    [Google Scholar]
  9. LevinJ.H. PecoraroA. OchsV. MeagherA. SteenburgS.D. HammerP.M. Characterization of fatal blunt injuries using postmortem computed tomography.J. Trauma Acute Care Surg.202395218619010.1097/TA.000000000000401237068024
    [Google Scholar]
  10. MadeaB. DoberentzE. JackowskiC. Vital reactions – An updated overview.Forensic Sci. Int.201930511002910.1016/j.forsciint.2019.11002931726327
    [Google Scholar]
  11. DobayA. FordJ. DeckerS. AmpanoziG. FranckenbergS. AffolterR. SieberthT. EbertL.C. Potential use of deep learning techniques for postmortem imaging.Forensic Sci. Med. Pathol.202016467167910.1007/s12024‑020‑00307‑332990926
    [Google Scholar]
  12. FineschiV. BaroldiG. SilverM.S. Pathology of the heart and sudden death in forensic medicine.1st edBoca RatonCRC Press200610.1201/9781420006438
    [Google Scholar]
  13. The new IstatData database.2021Available from: http://dati.istat.it/#
  14. RobertsJ.D. GollobM.H. The genetic and clinical features of cardiac channelopathies.Future Cardiol.20106449150610.2217/fca.10.2720608822
    [Google Scholar]
  15. ThieneG. Sudden cardiac death in the young: A genetic destiny?Clin. Med.2018182s17s2310.7861/clinmedicine.18‑2‑s1729700088
    [Google Scholar]
  16. MellorG. RajuH. de NoronhaS.V. PapadakisM. SharmaS. BehrE.R. SheppardM.N. Clinical characteristics and circumstances of death in the sudden arrhythmic death syndrome.Circ. Arrhythm. Electrophysiol.2014761078108310.1161/CIRCEP.114.00185425262685
    [Google Scholar]
  17. AquaroG. GuidiB. EmdinM. PucciA. ChitiE. SanturroA. ScopettiM. BiondiF. MaieseA. TurillazziE. CamastraG. FaggioniL. CioniD. FineschiV. NeriE. Di PaoloM. Post-mortem cardiac magnetic resonance in explanted heart of patients with sudden death.Int. J. Environ. Res. Public Health202219201339510.3390/ijerph19201339536293989
    [Google Scholar]
  18. BertozziG. CafarelliF.P. FerraraM. Di FazioN. GuglielmiG. CipolloniL. ManettiF. La RussaR. FineschiV. Sudden cardiac death and ex-situ post-mortem cardiac magnetic resonance imaging: A morphological study based on diagnostic correlation methodology.Diagnostics202212121810.3390/diagnostics1201021835054385
    [Google Scholar]
  19. SchwendenerN. JackowskiC. PerssonA. WarntjesM.J. SchusterF. RivaF. ZechW.D. Detection and differentiation of early acute and following age stages of myocardial infarction with quantitative post-mortem cardiac 1.5 T MR.Forensic Sci. Int.201727024825410.1016/j.forsciint.2016.10.01427836412
    [Google Scholar]
  20. BassoC. AguileraB. BannerJ. CohleS. d’AmatiG. de GouveiaR.H. di GioiaC. FabreA. GallagherP.J. LeoneO. LucenaJ. MitrofanovaL. MolinaP. ParsonsS. RizzoS. SheppardM.N. MierM.P.S. Kim SuvarnaS. ThieneG. van der WalA. VinkA. MichaudK. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology.Virchows Arch.2017471669170510.1007/s00428‑017‑2221‑028889247
    [Google Scholar]
  21. BaroldiG. MittlemanR.E. ParoliniM. SilverM.D. FineschiV. Myocardial contraction bands.Int. J. Legal Med.2001115314215110.1007/s00414010022911775016
    [Google Scholar]
  22. KissA. WuP. SchledererM. PilzP.M. SzaboP.L. LiJ. WeberL. VrakaC. PichlerV. MitterhauserM. ZhangX. ZinsK. AbrahamD. LiS. PodesserB.K. HackerM. LiX. Sympathetic nerve innervation and metabolism in ischemic myocardium in response to remote ischemic perconditioning.Basic Res. Cardiol.202211714210.1007/s00395‑022‑00946‑336008727
    [Google Scholar]
  23. CerretaniD. BelloS. CantatoreS. FiaschiA.I. MontefrancescoG. NeriM. PomaraC. RiezzoI. FioreC. BonsignoreA. TurillazziE. FineschiV. Acute administration of 3,4-methylenedioxymethamphetamine (MDMA) induces oxidative stress, lipoperoxidation and TNFα-mediated apoptosis in rat liver.Pharmacol. Res.201164551752710.1016/j.phrs.2011.08.00221864684
    [Google Scholar]
  24. OlivaA. PascaliV.L. HongK. BrugadaR. Molecular autopsy of sudden cardiac death (SCD): The challenge of forensic pathologist to the complexity of genomics.Am. J. Forensic Med. Pathol.200526436937010.1097/01.paf.0000188080.84626.a616304475
    [Google Scholar]
  25. CunninghamK.S. The promise of molecular autopsy in forensic pathology practice.Acad. Forensic Pathol.20177455156610.23907/2017.04731240006
    [Google Scholar]
  26. McGillL.A. ScottA.D. FerreiraP.F. Nielles-VallespinS. IsmailT. KilnerP.J. GatehouseP.D. de SilvaR. PrasadS.K. GiannakidisA. FirminD.N. PennellD.J. Heterogeneity of fractional anisotropy and mean diffusivity measurements by in vivo diffusion tensor imaging in normal human hearts.PLoS One2015107e013236010.1371/journal.pone.013236026177211
    [Google Scholar]
  27. StimmJ. GuenthnerC. KozerkeS. StoeckC.T. Comparison of interpolation methods of predominant cardiomyocyte orientation from in vivo and ex vivo cardiac diffusion tensor imaging data.NMR Biomed.2022355e466710.1002/nbm.466734964179
    [Google Scholar]
  28. StimmJ. NordslettenD.A. JilbertoJ. MillerR. BerberoğluE. KozerkeS. StoeckC.T. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods.Front. Physiol.202213104253710.3389/fphys.2022.104253736518106
    [Google Scholar]
  29. Nielles-VallespinS. ScottA. FerreiraP. KhaliqueZ. PennellD. FirminD. Cardiac diffusion: Technique and practical applications.J. Magn. Reson. Imaging202052234836810.1002/jmri.2691231482620
    [Google Scholar]
  30. KhaliqueZ. FerreiraP.F. ScottA.D. Nielles-VallespinS. Martinez-NaharroA. FontanaM. HawkinsP. FirminD.N. PennellD.J. Diffusion tensor cardiovascular magnetic resonance in cardiac amyloidosis.Circ. Cardiovasc. Imaging2020135e00990110.1161/CIRCIMAGING.119.00990132408830
    [Google Scholar]
  31. DasA. KellyC. TehI. NguyenC. BrownL.A.E. ChowdharyA. JexN. ThirunavukarasuS. SharrackN. GoreckaM. SwobodaP.P. GreenwoodJ.P. KellmanP. MoonJ.C. DaviesR.H. LopesL.R. JoyG. PleinS. SchneiderJ.E. Dall’ArmellinaE. Phenotyping hypertrophic cardiomyopathy using cardiac diffusion magnetic resonance imaging: the relationship between microvascular dysfunction and microstructural changes.Eur. Heart J. Cardiovasc. Imaging202223335236210.1093/ehjci/jeab21034694365
    [Google Scholar]
  32. Le BihanD. IimaM. Diffusion magnetic resonance imaging: What water tells us about biological tissues.PLoS Biol.2015137e100220310.1371/journal.pbio.100220326204162
    [Google Scholar]
  33. KhaliqueZ. FerreiraP.F. ScottA.D. Nielles-VallespinS. FirminD.N. PennellD.J. Diffusion tensor cardiovascular magnetic resonance imaging.JACC Cardiovasc. Imaging20201351235125510.1016/j.jcmg.2019.07.01631607663
    [Google Scholar]
  34. MekkaouiC. HuangS. ChenH.H. DaiG. ReeseT.G. KostisW.J. ThiagalingamA. Maurovich-HorvatP. RuskinJ.N. HoffmannU. JackowskiM.P. SosnovikD.E. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation.J. Cardiovasc. Magn. Reson.20121417110.1186/1532‑429X‑14‑7023061749
    [Google Scholar]
  35. KhaliqueZ. FerreiraP.F. ScottA.D. Nielles-VallespinS. WageR. FirminD.N. PennellD.J. Diffusion tensor cardiovascular magnetic resonance of microstructural recovery in dilated cardiomyopathy.JACC Cardiovasc. Imaging201811101548155010.1016/j.jcmg.2018.01.02529550320
    [Google Scholar]
  36. ArigaR TunnicliffeEM ManoharSG 4789 Non-invasive imaging of myocardial disarray associates with ventricular arrhythmia in hypertrophic cardiomyopathy.Eur. Heart J.201738suppl_1ehx493.4789
    [Google Scholar]
  37. MekkaouiC. JackowskiM.P. KostisW.J. StoeckC.T. ThiagalingamA. ReeseT.G. ReddyV.Y. RuskinJ.N. KozerkeS. SosnovikD.E. Myocardial scar delineation using diffusion tensor magnetic resonance tractography.J. Am. Heart Assoc.201873e00783410.1161/JAHA.117.00783429420216
    [Google Scholar]
  38. PashakhanlooF. HerzkaD.A. MoriS. ZvimanM. HalperinH. GaiN. BluemkeD.A. TrayanovaN.A. McVeighE.R. Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction.J. Cardiovasc. Magn. Reson.2016191910.1186/s12968‑016‑0317‑328122618
    [Google Scholar]
  39. HaghbayanH. LougheedN. DevaD.P. ChanK.K.W. LimaJ.A.C. YanA.T. Peri-infarct quantification by cardiac magnetic resonance to predict outcomes in ischemic cardiomyopathy.Circ. Cardiovasc. Imaging20191211e00915610.1161/CIRCIMAGING.119.00915631735067
    [Google Scholar]
  40. Zeidan-ShwiriT. YangY. LashevskyI. KadmonE. KagalD. DickA. Laish FarkashA. PaulG. GaoD. ShurrabM. NewmanD. WrightG. CrystalE. Magnetic resonance estimates of the extent and heterogeneity of scar tissue in ICD patients with ischemic cardiomyopathy predict ventricular arrhythmia.Heart Rhythm201512480280810.1016/j.hrthm.2015.01.00725583153
    [Google Scholar]
  41. JonesR.E. ZaidiH.A. HammersleyD.J. HatipogluS. OwenR. BalabanG. de MarvaoA. SimardF. LotaA.S. MahonC. AlmogheerB. MachL. MusellaF. ChenX. GregsonJ. LazzariL. RavendrenA. LeyvaF. ZhaoS. VazirA. LamataP. HallidayB.P. PennellD.J. BishopM.J. PrasadS.K. Comprehensive phenotypic characterization of late gadolinium enhancement predicts sudden cardiac death in coronary artery disease.JACC Cardiovasc. Imaging202316562863810.1016/j.jcmg.2022.10.02036752426
    [Google Scholar]
  42. WuK.C. Myocardial tissue characterization to predict ventricular arrhythmic risk.JACC Cardiovasc. Imaging202316563964110.1016/j.jcmg.2022.12.01736707355
    [Google Scholar]
  43. ZaidiH.A. JonesR.E. HammersleyD.J. HatipogluS. BalabanG. MachL. HallidayB.P. LamataP. PrasadS.K. BishopM.J. Machine learning analysis of complex late gadolinium enhancement patterns to improve risk prediction of major arrhythmic events.Front. Cardiovasc. Med.202310108277810.3389/fcvm.2023.108277836824460
    [Google Scholar]
  44. GhanbariF. JoyceT. LorenzoniV. GuaricciA.I. PavonA.G. FusiniL. AndreiniD. RabbatM.G. AquaroG.D. AbeteR. BogaertJ. CamastraG. CarigiS. CarrabbaN. CasavecchiaG. CensiS. CicalaG. De CeccoC.N. De LazzariM. Di GiovineG. Di RomaM. FocardiM. GaibazziN. GismondiA. GravinaM. LanzilloC. LombardiM. Lozano-TorresJ. MasiA. MoroC. MuscogiuriG. NeseA. PradellaS. SbarbatiS. SchoepfU.J. ValentiniA. CrelierG. MasciP.G. PontoneG. KozerkeS. SchwitterJ. AI cardiac MRI scar analysis aids prediction of major arrhythmic events in the multicenter DERIVATE registry.Radiology20233073e22223910.1148/radiol.22223936943075
    [Google Scholar]
  45. RuderT.D. HatchG.M. SiegenthalerL. AmpanoziG. MathierS. ThaliM.J. WeberO.M. The influence of body temperature on image contrast in post mortem MRI.Eur. J. Radiol.20128161366137010.1016/j.ejrad.2011.02.06221458188
    [Google Scholar]
  46. O’KeefeH. ShenfineR. BrownM. BeyerF. RankinJ. Are non-invasive or minimally invasive autopsy techniques for detecting cause of death in prenates, neonates and infants accurate? A systematic review of diagnostic test accuracy.BMJ Open2023131e06477410.1136/bmjopen‑2022‑06477436609326
    [Google Scholar]
  47. MichaudK. JacobsenC. BassoC. BannerJ. BlokkerB.M. de BoerH.H. DedouitF. O’DonnellC. GiordanoC. MagninV. GrabherrS. SuvarnaS.K. WozniakK. ParsonsS. van der WalA.C. Application of postmortem imaging modalities in cases of sudden death due to cardiovascular diseases–current achievements and limitations from a pathology perspective.Virchows Arch.2023482238540610.1007/s00428‑022‑03458‑636565335
    [Google Scholar]
  48. FemiaG. SemsarianC. LangloisN. McGuireM. RaleighJ. TaylorA. PuranikR. Post-mortem imaging adjudicated sudden death: Causes and controversies.Heart Lung Circ.2019281152110.1016/j.hlc.2018.09.00330340963
    [Google Scholar]
  49. FemiaG. LangloisN. RaleighJ. GrayB. OthmanF. PerumalS.R. SemsarianC. PuranikR. Comparison of conventional autopsy with post-mortem magnetic resonance, computed tomography in determining the cause of unexplained death.Forensic Sci. Med. Pathol.2021171101810.1007/s12024‑020‑00343‑z33464532
    [Google Scholar]
  50. GaschoD. Photon-counting CT for forensic death investigations—A glance into the future of virtual autopsy.Frontiers in Radiology202444146323610.3389/fradi.2024.146323639351027
    [Google Scholar]
  51. RuttyG.N. MorganB. RobinsonC. RajV. PakkalM. AmorosoJ. VisserT. SaundersS. BiggsM. HollingburyF. McGregorA. WestK. RichardsC. BrownL. HarrisonR. HewR. Diagnostic accuracy of post-mortem CT with targeted coronary angiography versus autopsy for coroner-requested post-mortem investigations: A prospective, masked, comparison study.Lancet20173901009014515410.1016/S0140‑6736(17)30333‑128551075
    [Google Scholar]
  52. RotzingerD.C. MagninV. van der WalA.C. GrabherrS. QanadliS.D. MichaudK. Coronary CT angiography for the assessment of atherosclerotic plaque inflammation: Postmortem proof of concept with histological validation.Eur. Radiol.20233431755176310.1007/s00330‑023‑10169‑237658143
    [Google Scholar]
  53. WoonC.K. OmarE. SiewS.F. NawawiH.M. KasimN.A.M. Chainchel SinghM.K. The effect of post-mortem computed tomography angiography (PMCTA) on biomarkers of coronary artery disease.J. Forensic Leg. Med.202410210265410.1016/j.jflm.2024.10265438310784
    [Google Scholar]
  54. TurillazziE. KarchS.B. NeriM. PomaraC. RiezzoI. FineschiV. Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations.Int. J. Legal Med.2008122217317710.1007/s00414‑007‑0208‑017924128
    [Google Scholar]
  55. BaldinoG. MondelloC. SapienzaD. StassiC. AsmundoA. GualnieraP. VaninS. Ventura SpagnoloE. Multidisciplinary forensic approach in “complex” bodies: Systematic review and procedural proposal.Diagnostics 202313231010.3390/diagnostics1302031036673120
    [Google Scholar]
  56. DahlK. AndersenM. HenriksenT.B. Association between auditory system pathology and sudden infant death syndrome (SIDS): A systematic review.BMJ Open20211112e05531810.1136/bmjopen‑2021‑05531834911724
    [Google Scholar]
  57. Collados-RosA. Pérez-CárcelesM.D. LegazI. Is there a role for the microbiome and sudden death? A systematic review.Life 20211112134510.3390/life1112134534947876
    [Google Scholar]
  58. LiJ. WuY. LiuM. LiN. DangL. AnG. LuX. WangL. DuQ. CaoJ. SunJ. Multi-omics integration strategy in the post-mortem interval of forensic science.Talanta2024268Pt 112524910.1016/j.talanta.2023.12524937839320
    [Google Scholar]
  59. KongH. RongJ. BainC. ZhangX. ParsonsS. ChenG. BassedR. Pericardial effusion detection on post-mortem computed tomography images using convolutional neural networks.Stud. Health Technol. Inform.202431074574910.3233/SHTI23106438269908
    [Google Scholar]
  60. ArnoldI. SchwendenerN. LombardoP. JackowskiC. ZechW.D. 3Tesla post-mortem MRI quantification of anatomical brain structures.Forensic Sci. Int.202132711098410.1016/j.forsciint.2021.11098434482282
    [Google Scholar]
  61. RuderT.D. ThaliM.J. HatchG.M. Essentials of forensic post-mortem MR imaging in adults.Br. J. Radiol.20148710362013056710.1259/bjr.2013056724191122
    [Google Scholar]
  62. NeumayerB. SchloeglM. PayerC. WidekT. TschaunerS. EhammerT. StollbergerR. UrschlerM. Reducing acquisition time for MRI-based forensic age estimation.Sci. Rep.201881206310.1038/s41598‑018‑20475‑129391552
    [Google Scholar]
  63. MoeremansM. AvniF.E. d’HaeneN. LamN.M. MetensT. D’HondtA. Combined prenatal US and post-mortem fetal MRI: Can they replace conventional autopsy for fetal body abnormalities?Eur. Radiol.202334163264210.1007/s00330‑023‑09847‑y37526669
    [Google Scholar]
  64. EbataK. NorikiS. InaiK. KimuraH. Changes in magnetic resonance imaging relaxation time on postmortem magnetic resonance imaging of formalin-fixed human normal heart tissue.BMC Med. Imaging202121113410.1186/s12880‑021‑00666‑534556039
    [Google Scholar]
  65. CarpenterJ.P. HeT. KirkP. RoughtonM. AndersonL.J. de NoronhaS.V. BaksiA.J. SheppardM.N. PorterJ.B. WalkerJ.M. WoodJ.C. ForniG. CataniG. MattaG. FucharoenS. FlemingA. HouseM. BlackG. FirminD.N. St PierreT.G. PennellD.J. Calibration of myocardial T2 and T1 against iron concentration.J. Cardiovasc. Magn. Reson.20141616210.1186/s12968‑014‑0062‑425158620
    [Google Scholar]
/content/journals/cmim/10.2174/0115734056343601250123093759
Loading
/content/journals/cmim/10.2174/0115734056343601250123093759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test