Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Introduction

This study explores the effectiveness of microwave plasma pyrolysis in reducing heavy metal concentrations, specifically cadmium, in automobile shredder residue (ASR).

Methods

The ASR was subjected to plasma pyrolysis at microwave power levels ranging from 800 to 1000W, resulting in a significant decrease in heavy metal concentration in the char. Utilizing the Bureau Communautaire de Référence (BCR) sequential extraction method, a standardized procedure developed by the European Commission, we assessed the chemical speciation and matrix properties of the char. The results indicated that microwave plasma treatment effectively decreased the bioavailable forms of cadmium. After 6 minutes of pyrolysis at 1000W, the exchangeable and acid-soluble fractions (F1) dropped to 10%, while the reducible fraction (F2) fell to 12%.

Results

This treatment resulted in a substantial increase in the oxidizable (F3) and residue (F4) fractions, which reached 27% and 51%, respectively. Importantly, the potential ecological risk of cadmium decreased significantly, with the risk index (Er) dropping from 164.91 to 28.45, aligning with Taiwan's regulatory standards for non-hazardous waste.

Conclusion

These findings suggest that microwave plasma pyrolysis is a promising and sustainable approach for the disposal of ASR, offering an environmentally friendly alternative for waste management. This study provides valuable insights for policymakers, environmental scientists, and industries seeking effective solutions for ASR treatment.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356323878240903161253
2024-09-12
2025-09-03
Loading full text...

Full text loading...

References

  1. LoY-P. Hydrogen production and pollutants emission characteristics by co-gasified of paper-mill sludge and automobile shredder residues in a commercial scale fluidized bed gasifier.Int. J. Hydrogen Energy2023524657
    [Google Scholar]
  2. VijayanS.K. KibriaM.A. BhattacharyaS. A study on pyrolysis of pretreated automotive shredder residue—Thermochemical calculations and experimental work.Front. Sustain.2022381122610.3389/frsus.2022.811226
    [Google Scholar]
  3. SakaiS. YoshidaH. HiratsukaJ. VandecasteeleC. KohlmeyerR. RotterV.S. PassariniF. SantiniA. PeelerM. LiJ. OhG-J. ChiN.K. BastianL. MooreS. KajiwaraN. TakigamiH. ItaiT. TakahashiS. TanabeS. TomodaK. HirakawaT. HiraiY. AsariM. YanoJ. An international comparative study of end-of-life vehicle (ELV) recycling systems.J. Mater. Cycles Waste Manag.201416112010.1007/s10163‑013‑0173‑2
    [Google Scholar]
  4. WongY.C. Al-ObaidiK.M. MahyuddinN. Recycling of end-of-life vehicles (ELVs) for building products: Concept of processing framework from automotive to construction industries in Malaysia.J. Clean. Prod.201819028530210.1016/j.jclepro.2018.04.145
    [Google Scholar]
  5. ShaheenS.M. RinklebeJ. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil.Ecol. Eng.20157431932610.1016/j.ecoleng.2014.10.024
    [Google Scholar]
  6. SinghJ. LeeB.K. Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues.Ecol. Eng.201581768110.1016/j.ecoleng.2015.04.036
    [Google Scholar]
  7. JieZ. Microwave plasma torch for solid waste treatment.Tsinghua University-IET Electrical Engineering Academic Forum: Constructing Green and Sustainable Energy System15-16 May 2021, Beijing, China2021616710.1049/icp.2021.2071
    [Google Scholar]
  8. JieZ. LiuC. HuangS. ZhangG. Mechanisms of gas temperature variation of the atmospheric microwave plasma torch.J. Appl. Phys.20211292323330210.1063/5.0049620
    [Google Scholar]
  9. LiK. JiangQ. ChenG. GaoL. PengJ. ChenQ. KoppalaS. OmranM. ChenJ. Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends.Bioresour. Technol.202131912417210.1016/j.biortech.2020.124172 33011627
    [Google Scholar]
  10. PeiS.L. ChenT.L. PanS.Y. YangY.L. SunZ.H. LiY.J. Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash.J. Hazard. Mater.202039812295910.1016/j.jhazmat.2020.122959 32474322
    [Google Scholar]
  11. JieZ. LiuC. XiaD. ZhangG. Microwave plasma torches for solid waste treatment and vitrification.Environ. Sci. Pollut. Res. Int.20223012328273283810.1007/s11356‑022‑24523‑2 36472733
    [Google Scholar]
  12. LeinsM. Development and spectroscopic investigation of a microwave plasma source for the decomposition of waste gases.PhD thesis, Institut für Plasmaforschung der Universität Stuttgart2010
    [Google Scholar]
  13. OngM.Y. NomanbhayS. KusumoF. ShowP.L. Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: A review.J. Clean. Prod.202233613044710.1016/j.jclepro.2022.130447
    [Google Scholar]
  14. HeberleinJ. MurphyA.B. Thermal plasma waste treatment.J. Phys. D Appl. Phys.200841505300110.1088/0022‑3727/41/5/053001
    [Google Scholar]
  15. GomezE. RaniD.A. CheesemanC.R. DeeganD. WiseM. BoccacciniA.R. Thermal plasma technology for the treatment of wastes: A critical review.J. Hazard. Mater.20091612-361462610.1016/j.jhazmat.2008.04.017 18499345
    [Google Scholar]
  16. FridmanA. Plasma chemistry.Cambridge university press200810.1017/CBO9780511546075
    [Google Scholar]
  17. YuG. YuQ. JiangY.L. ZengK.S. GuF. Mechanism of NO reduction with non-thermal plasma.J. Environ. Sci.2005173445447 16083121
    [Google Scholar]
  18. NourreddineM. Recycling of auto shredder residue.J. Hazard. Mater.2007139348149010.1016/j.jhazmat.2006.02.054 16600493
    [Google Scholar]
  19. RoyC. ChaalaA. Vacuum pyrolysis of automobile shredder residues.Resour. Conserv. Recycling200132112710.1016/S0921‑3449(00)00088‑4
    [Google Scholar]
  20. XiangQ. MitraS. XanthosM. DeyS.K. Evolution and kinetics of volatile organic compounds generated during low-temperature polymer degradation.J. Air Waste Manag. Assoc.20025219510310.1080/10473289.2002.10470757 15152669
    [Google Scholar]
  21. ZhangM. SunX. XuJ. Heavy metal pollution in the East China Sea: A review.Mar. Pollut. Bull.202015911147310.1016/j.marpolbul.2020.111473 32853847
    [Google Scholar]
  22. Harmesa; Cordova, M.R. A preliminary study on heavy metal pollutants chrome (Cr), cadmium (Cd), and lead (Pb) in sediments and beach morning glory vegetation (Ipomoea pes-caprae) from Dasun Estuary, Rembang, Indonesia.Mar. Pollut. Bull.202116211181910.1016/j.marpolbul.2020.111819 33203606
    [Google Scholar]
  23. DarM.I. KhanF.A. GreenI.D. NaikooM.I. The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: a comparison with the labile elements Cd and Zn.Environ. Sci. Pollut. Res. Int.20152220161331614210.1007/s11356‑015‑4836‑5 26070738
    [Google Scholar]
  24. BarbierO. JacquilletG. TaucM. CougnonM. PoujeolP. Effect of heavy metals on, and handling by, the kidney.Nephron, Physiol.2005994105p11010.1159/000083981 15722646
    [Google Scholar]
  25. GodtJ. ScheidigF. Grosse-SiestrupC. EscheV. BrandenburgP. ReichA. GronebergD.A. The toxicity of cadmium and resulting hazards for human health.J. Occup. Med. Toxicol.2006112210.1186/1745‑6673‑1‑22 16961932
    [Google Scholar]
  26. ChenD. LiuX. BianR. ChengK. ZhangX. ZhengJ. JosephS. CrowleyD. PanG. LiL. Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis.J. Environ. Manage.2018222768510.1016/j.jenvman.2018.05.004 29804035
    [Google Scholar]
  27. DuY. WangX. JiX. ZhangZ. SahaU.K. XieW. XieY. WuJ. PengB. TanC. Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil.Chemosphere201820413013910.1016/j.chemosphere.2018.04.005 29655105
    [Google Scholar]
  28. BianR. LiL. BaoD. ZhengJ. ZhangX. ZhengJ. LiuX. ChengK. PanG. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar.Environ. Sci. Pollut. Res. Int.20162310100281003610.1007/s11356‑016‑6214‑3 26865487
    [Google Scholar]
  29. LundP. Impacts of EU carbon emission trade directive on energy-intensive industries — Indicative micro-economic analyses.Ecol. Econ.200763479980610.1016/j.ecolecon.2007.02.002
    [Google Scholar]
  30. LasatM.M. Phytoextraction of toxic metals: a review of biological mechanisms.J. Environ. Qual.200231110912010.2134/jeq2002.1090 11837415
    [Google Scholar]
  31. World Health Report 2004: Changing History2004Available from: https://reliefweb.int/report/world/world-health-report-2004-changing-history?gad_source=1&gclid=CjwKCAjw8rW2BhAgEiwAoRO5rAIxrBMZrT-gFtLinZleqdYqum5WiLIECLOtDFsOt2pIrLYQvmyFKBoC5lcQAvD_BwE (accessed on 27-8-2024)
  32. ChenM. LiX. YangQ. ZengG. ZhangY. LiaoD. LiuJ. HuJ. GuoL. Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China.J. Hazard. Mater.20081602-332432910.1016/j.jhazmat.2008.03.036 18573598
    [Google Scholar]
  33. LengL. YuanX. HuangH. JiangH. ChenX. ZengG. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge.Bioresour. Technol.201416714415010.1016/j.biortech.2014.05.119 24976493
    [Google Scholar]
  34. XuY. QiF. BaiT. YanY. WuC. AnZ. LuoS. HuangZ. XieP. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars.J. Hazard. Mater.201938012087010.1016/j.jhazmat.2019.120870 31330385
    [Google Scholar]
  35. ZhaoB. XuX. XuS. ChenX. LiH. ZengF. Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride.Bioresour. Technol.201724337538310.1016/j.biortech.2017.06.032 28686928
    [Google Scholar]
  36. XiaoZ. YuanX. LiH. JiangL. LengL. ChenX. ZengG. LiF. CaoL. Chemical speciation, mobility and phyto-accessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge.Sci. Total Environ.201553677478310.1016/j.scitotenv.2015.07.126 26254077
    [Google Scholar]
  37. YuanX. HuangH. ZengG. LiH. WangJ. ZhouC. ZhuH. PeiX. LiuZ. LiuZ. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge.Bioresour. Technol.201110254104411010.1016/j.biortech.2010.12.055 21211964
    [Google Scholar]
  38. LiuX. WangY. GuiC. LiP. ZhangJ. ZhongH. WeiY. Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis.RSC Adv.2016610410196010196710.1039/C6RA22511J
    [Google Scholar]
  39. SanitoR.C. Bernuy-ZumaetaM. WangW-C. YangH-H. YouS-J. WangY-F. Optimization of metals degradation and vitrification from fly ash using Taguchi design combined with plasma pyrolysis and recycling in cement construction.J. Clean. Prod.202338713593010.1016/j.jclepro.2023.135930
    [Google Scholar]
  40. XieS. YuG. LiC. YouF. LiJ. TianR. WangG. WangY. Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge.Environ. Sci. Pollut. Res. Int.20192616165371654710.1007/s11356‑019‑04961‑1 30980370
    [Google Scholar]
  41. WhalleyC. GrantA. Assessment of the phase selectivity of the European Community Bureau of Reference (BCR) sequential extraction procedure for metals in sediment.Anal. Chim. Acta1994291328729510.1016/0003‑2670(94)80024‑3
    [Google Scholar]
  42. HakansonL. An ecological risk index for aquatic pollution control.a sedimentological approach.Water Res.1980148975100110.1016/0043‑1354(80)90143‑8
    [Google Scholar]
  43. WangX. LiC. LiZ. YuG. WangY. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge.Ecotoxicol. Environ. Saf.2019168455210.1016/j.ecoenv.2018.10.022 30384166
    [Google Scholar]
  44. HuangH. YuanX. ZengG. ZhuH. LiH. LiuZ. JiangH. LengL. BiW. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge.Bioresour. Technol.201110222103461035110.1016/j.biortech.2011.08.117 21940164
    [Google Scholar]
  45. TsaiC.H. ShenY.H. TsaiW.T. Analysis of current status and regulatory promotion for incineration bottom ash recycling in Taiwan.Resources202091011710.3390/resources9100117
    [Google Scholar]
  46. MaW. ShiW. ShiY. ChenD. LiuB. ChuC. LiD. LiY. ChenG. Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash.J. Hazard. Mater.202140812480910.1016/j.jhazmat.2020.124809 33383457
    [Google Scholar]
  47. KuoY.M. LinT.C. TsaiP.J. Effect of SiO2 on immobilization of metals and encapsulation of a glass network in slag.J. Air Waste Manag. Assoc.200353111412141610.1080/10473289.2003.10466307 14649761
    [Google Scholar]
  48. YangF. Radiation Transfer characteristics and Transport Properties of Nitrogen-Polytetrafluoroethylene mixture plasma under Equilibrium and Non-equilibrium conditions.United KingdomThe University of Liverpool2016
    [Google Scholar]
  49. SnoeckxR. BogaertsA. Plasma technology – A novel solution for CO 2 conversion?Chem. Soc. Rev.201746195805586310.1039/C6CS00066E 28825736
    [Google Scholar]
  50. SanitoR.C. YouS.J. WangY.F. Degradation of contaminants in plasma technology: An overview.J. Hazard. Mater.2022424Pt A12739010.1016/j.jhazmat.2021.127390 34879580
    [Google Scholar]
  51. ZhangZ. JuR. ZhouH. ChenH. Migration characteristics of heavy metals during sludge pyrolysis.Waste Manag.2021120253210.1016/j.wasman.2020.11.018 33279824
    [Google Scholar]
  52. LievensC. YpermanJ. VangronsveldJ. CarleerR. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals.Fuel20088710-111894190510.1016/j.fuel.2007.10.021
    [Google Scholar]
  53. KistlerR.C. WidmerF. BrunnerP.H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge.Environ. Sci. Technol.198721770470810.1021/es00161a012 19995048
    [Google Scholar]
  54. HuangY.F. LoS.L. Energy recovery from waste printed circuit boards using microwave pyrolysis: Product characteristics, reaction kinetics, and benefits.Environ. Sci. Pollut. Res. Int.20202734432744328210.1007/s11356‑020‑10304‑2 32734544
    [Google Scholar]
  55. GaleyB. GautierM. KimB. BlancD. ChatainV. DucomG. DumontN. GourdonR. Trace metal elements vaporization and phosphorus recovery during sewage sludge thermochemical treatment – A review.J. Hazard. Mater.2022424Pt B12736010.1016/j.jhazmat.2021.127360 34638074
    [Google Scholar]
  56. SinghJ. LeeB.K. Pollution reduction and hydrometallurgical recovery of heavy metals from the automobile shredder residue: Leaching kineticsThe 10th Asia Pacific Conference on Sustainable Energy & Environmental Technologies, July 2-52015Seoul, South Korea, pp. 1-4.
    [Google Scholar]
  57. SinghJ. LeeB.K. Kinetics and extraction of heavy metals resources from automobile shredder residue.Process Saf. Environ. Prot.201699697910.1016/j.psep.2015.10.010
    [Google Scholar]
  58. CornuJ.Y. ParatC. SchneiderA. AuthierL. DauthieuM. Sappin-DidierV. DenaixL. Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting.Chemosphere200976450250810.1016/j.chemosphere.2009.03.016 19356783
    [Google Scholar]
  59. JinJ. LiY. ZhangJ. WuS. CaoY. LiangP. ZhangJ. WongM.H. WangM. ShanS. ChristieP. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.J. Hazard. Mater.201632041742610.1016/j.jhazmat.2016.08.050 27585274
    [Google Scholar]
  60. W dC.U. VekshaA. GiannisA. LiangY.N. LisakG. HuX. LimT.T. Insights into the speciation of heavy metals during pyrolysis of industrial sludge.Sci. Total Environ.201969123224210.1016/j.scitotenv.2019.07.09531323569
    [Google Scholar]
  61. JinJ. WangM. CaoY. WuS. LiangP. LiY. ZhangJ. ZhangJ. WongM.H. ShanS. ChristieP. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.Bioresour. Technol.201722821822610.1016/j.biortech.2016.12.103 28064134
    [Google Scholar]
  62. DeviP. SarohaA.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.Bioresour. Technol.201416230831510.1016/j.biortech.2014.03.093 24762760
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356323878240903161253
Loading
/content/journals/cmic/10.2174/0122133356323878240903161253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test