Skip to content
2000
Volume 8, Issue 8
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Hepatitis C is a predominantly chronic viral infection, affecting 1-3percent of the world population. The causative agent, the hepatitis C virus (HCV), has a positive strand-RNA genome that is utilized, in infected cells, as an mRNA to drive the synthesis of a large polyprotein precursor. This precursor subsequently undergoes proteolytic maturation to generate all of the functional, both structural and nonstructural proteins necessary for viral replication and assembly. The proteolytic activity that is responsible for the generation of the mature viral polymerase as well as for most of the cleavages occurring in the nonstructural region of the polyprotein is expressed by the virus itself and is contained in its nonstructural protein 3 (NS3). Here, the N-terminal 180 amino acids form a chymotrypsin-like serine protease domain. Full activation of this protease is achieved only after complexation with another viral protein, the cofactor protein NS4A. Together, NS3 and NS4A form the active, heterodimeric serine protease that presently is the target of medicinal chemistry efforts aiming at the development of inhibitors with potential antiviral activity. We here review the recent progress in our understanding of the structure and function of the enzyme and in the development of selective and potent NS3 protease inhibitors.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867013372814
2001-07-01
2025-09-02
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867013372814
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test