Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673410629250520111827
2025-05-29
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/28/CMC-32-28-01.html?itemId=/content/journals/cmc/10.2174/0109298673410629250520111827&mimeType=html&fmt=ahah

References

  1. UppathiP. RajakumariS. SarithaK.V. Molecular docking: An emerging tool for target-based cancer therapy.Crit. Rev. Oncog.202530111310.1615/CritRevOncog.2024056533 39819431
    [Google Scholar]
  2. PaggiJ.M. PanditA. DrorR.O. The art and science of molecular docking.Annu. Rev. Biochem.202493138941010.1146/annurev‑biochem‑030222‑120000 38594926
    [Google Scholar]
  3. VicidominiC. FontanellaF. D’AlessandroT. RovielloG.N. A survey on computational methods in drug discovery for neurodegenerative diseases.Biomolecules20241410133010.3390/biom14101330 39456263
    [Google Scholar]
  4. ShahinR. JaafrehS. AzzamY. Tracking protein kinase targeting advances: Integrating QSAR into machine learning for kinase-targeted drug discovery.Future Sci. OA2025111248363110.1080/20565623.2025.2483631 40181786
    [Google Scholar]
  5. BachharS. KumarS. DuttaB. DasS. Emerging horizons of AI in pharmaceutical research.Adv. Pharmacol.202510332534810.1016/bs.apha.2025.01.016 40175048
    [Google Scholar]
  6. ZhangX. ShenC. ZhangH. KangY. HsiehC.Y. HouT. Advancing ligand docking through deep learning: Challenges and prospects in virtual screening.Acc. Chem. Res.202457101500150910.1021/acs.accounts.4c00093 38577892
    [Google Scholar]
  7. MullerC. RabalO. Diaz GonzalezC. Artificial intelligence, machine learning, and deep learning in real-life drug design cases.Methods Mol. Biol.2022239038340710.1007/978‑1‑0716‑1787‑8_16 34731478
    [Google Scholar]
  8. BaekM. DiMaioF. AnishchenkoI. DauparasJ. OvchinnikovS. LeeG.R. WangJ. CongQ. KinchL.N. SchaefferR.D. MillánC. ParkH. AdamsC. GlassmanC.R. DeGiovanniA. PereiraJ.H. RodriguesA.V. van DijkA.A. EbrechtA.C. OppermanD.J. SagmeisterT. BuhlhellerC. Pavkov-KellerT. RathinaswamyM.K. DalwadiU. YipC.K. BurkeJ.E. GarciaK.C. GrishinN.V. AdamsP.D. ReadR.J. BakerD. Accurate prediction of protein structures and interactions using a three-track neural network.Science2021373655787187610.1126/science.abj8754 34282049
    [Google Scholar]
  9. BredaA. BassoL. SantosD. de AzevedoW. Virtual screening of drugs: Score functions, docking, and drug design.Curr. Computeraided Drug Des.20084426527210.2174/157340908786786047
    [Google Scholar]
  10. SulimovV.B. KutovD.C. SulimovA.V. Advances in docking.Curr. Med. Chem.202026427555758010.2174/0929867325666180904115000 30182836
    [Google Scholar]
  11. RossG.A. MorrisG.M. BigginP.C. One size does not fit all: The limits of structure-based models in drug discovery.J. Chem. Theory Comput.2013994266427410.1021/ct4004228 24124403
    [Google Scholar]
  12. Bitencourt-FerreiraG. VillarrealM.A. QuirogaR. BiziukovaN. PoroikovV. TarasovaO. de Azevedo Junior, W.F. Exploring scoring function space: Developing computational models for drug discovery.Curr. Med. Chem.202431172361237710.2174/0929867330666230321103731 36944627
    [Google Scholar]
  13. PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. PrettenhoferP. WeissR. DubourgV. VerplasJ. PassosA. CournapeauD. BrucherM. PerrotM. DuchesnayE. Scikit-learn: Machine Learning in Python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  14. XavierM.M. HeckG.S. AvilaM.B. LevinN.M.B. PintroV.O. CarvalhoN.L. AzevedoW.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions.Comb. Chem. High Throughput Screen.2016191080181210.2174/1386207319666160927111347 27686428
    [Google Scholar]
  15. de AzevedoW.F. QuirogaR. VillarrealM.A. da SilveiraN.J.F. Bitencourt-FerreiraG. da SilvaA.D. Veit-AcostaM. OliveiraP.R. TutoneM. BiziukovaN. PoroikovV. TarasovaO. BaudS. SAnDReS2.0: Development of machine‐learning models to explore the scoring function space.J. Comput. Chem.202445272333234610.1002/jcc.27449 38900052
    [Google Scholar]
  16. da SilvaA.D. Bitencourt-FerreiraG. de AzevedoW.F. Taba: A tool to analyze the binding affinity.J. Comput. Chem.2020411697310.1002/jcc.26048 31410856
    [Google Scholar]
  17. Bitencourt-FerreiraG. de AzevedoW.F. Exploring the scoring function space.Methods Mol. Biol.2019205327528110.1007/978‑1‑4939‑9752‑7_17 31452111
    [Google Scholar]
  18. Bitencourt-FerreiraG. de AzevedoW.F. Machine learning to predict binding affinity.Methods Mol. Biol.2019205325127310.1007/978‑1‑4939‑9752‑7_16 31452110
    [Google Scholar]
  19. Veit-AcostaM. de Azevedo Junior, W.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery.Curr. Med. Chem.202229142438245510.2174/0929867328666210806105810 34365938
    [Google Scholar]
  20. RenF. DingX. ZhengM. KorzinkinM. CaiX. ZhuW. MantsyzovA. AliperA. AladinskiyV. CaoZ. KongS. LongX. Man LiuB.H. LiuY. NaumovV. ShneydermanA. OzerovI.V. WangJ. PunF.W. PolykovskiyD.A. SunC. LevittM. Aspuru-GuzikA. ZhavoronkovA. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor.Chem. Sci.20231461443145210.1039/D2SC05709C 36794205
    [Google Scholar]
  21. CavasottoC.N. Di FilippoJ.I. ScardinoV. Lessons learnt from machine learning in early stages of drug discovery.Expert Opin. Drug Discov.202419663163310.1080/17460441.2024.2354279 38727031
    [Google Scholar]
  22. GuoS.B. MengY. LinL. ZhouZ.Z. LiH.L. TianX.P. HuangW.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation.Mol. Cancer202423122310.1186/s12943‑024‑02140‑6 39369244
    [Google Scholar]
  23. HouJ. JunS.R. ZhangC. KimS.H. Global mapping of the protein structure space and application in structure-based inference of protein function.Proc. Natl. Acad. Sci. USA2005102103651365610.1073/pnas.0409772102 15705717
    [Google Scholar]
  24. Filgueira de AzevedoW. Machine learning meets physics-based modeling: A mass-spring system to predict protein-ligand binding affinity.Curr. Med. Chem.202532285882589710.2174/0109298673307315240730042209 39092736
    [Google Scholar]
  25. SantosL.M. AraújoL.P. FalleirosL. MarianoC.P. JuniorW.F.A. SilveiraN.J.F. Medicinal chemistry behind capivasertib discovery: Seventh magic bullet of the fragment-based drug design approved for oncology.Curr. Med. Chem.202532285898592310.2174/0109298673331253241004110953 40148304
    [Google Scholar]
  26. AguiarC. CampsI. Molecular docking in drug discovery: Techniques, applications, and advancements.Curr. Med. Chem.202532285924593810.2174/0109298673325827240926081845 39415575
    [Google Scholar]
  27. de AngeloR.M. NascimentoL.A. EncideJ.P.P. BarbosaH. Ghilardi LagoJ.H. da Silva EmeryF. HonorioK.M. Advances and Challenges in molecular docking applied to neglected tropical diseases.Curr. Med. Chem.202532285939595910.2174/0109298673327352240930040103 39773039
    [Google Scholar]
  28. QuirogaR. VillarrealM. Developing generalizable scoring functions for molecular docking: challenges and perspectives.Curr. Med. Chem.202532285960597210.2174/0109298673334469241017053508 39482913
    [Google Scholar]
  29. WaqasM. UllahS. Ahsan HalimS. UllahI. JanA. KhalidA. AliA. KhanA. Al-HarrasiA. Al-HarrasiA. Discovery of novel natural inhibitors against SARS-CoV-2 main protease: A rational approach to antiviral therapeutics.Curr. Med. Chem.202532285973599510.2174/0109298673292839240329081008 38591207
    [Google Scholar]
  30. CramponK. BourrassetC. BaudS. SteffenelL.A. SGPocket: A new graph convolutional neural network for ligand-protein binding site prediction.Curr. Med. Chem.202532285996600610.2174/0109298673289137240304165758 38468517
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673410629250520111827
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test