Skip to content
2000
image of Inflammatory Biomarkers in Hypertension

Abstract

Hypertension remains a leading modifiable risk factor for cardiovascular diseases, yet its underlying mechanisms are not fully understood. Emerging evidence suggests that inflammation plays a central role in the pathogenesis and progression of hypertension. This review explores the association between inflammatory biomarkers, such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), and hypertension. These biomarkers are not only indicators of inflammation but also active participants in the processes that elevate blood pressure, including endothelial dysfunction, oxidative stress, and immune system activation. Cytokines play a pivotal role in vascular remodeling and renal dysfunction, underscoring the inflammatory underpinnings of hypertension. Additionally, novel composite biomarkers like the monocyte-to-high-density lipoprotein ratio (MHR), systemic inflammation response index (SIRI), and systemic immune-inflammation index (SII) have been identified as valuable tools for assessing the inflammatory state in hypertensive patients. While renal denervation has emerged as a promising treatment for resistant hypertension, its impact on inflammatory biomarkers remains inconclusive, highlighting the need for further research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348789250604113545
2025-07-15
2025-09-10
Loading full text...

Full text loading...

References

  1. Egan B.M. Zhao Y. Axon R.N. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 2010 303 20 2043 2050 10.1001/jama.2010.650 20501926
    [Google Scholar]
  2. Olivares-Silva F. De Gregorio N. Espitia-Corredor J. Espinoza C. Vivar R. Silva D. Osorio J.M. Lavandero S. Peiró C. Sánchez-Ferrer C. Díaz-Araya G. Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 12 166241 10.1016/j.bbadis.2021.166241 34400298
    [Google Scholar]
  3. Zewinger S. Reiser J. Jankowski V. Alansary D. Hahm E. Triem S. Klug M. Schunk S.J. Schmit D. Kramann R. Körbel C. Ampofo E. Laschke M.W. Selejan S.R. Paschen A. Herter T. Schuster S. Silbernagel G. Sester M. Sester U. Aßmann G. Bals R. Kostner G. Jahnen-Dechent W. Menger M.D. Rohrer L. März W. Böhm M. Jankowski J. Kopf M. Latz E. Niemeyer B.A. Fliser D. Laufs U. Speer T. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat. Immunol. 2020 21 1 30 41 10.1038/s41590‑019‑0548‑1 31819254
    [Google Scholar]
  4. Guzik T.J. Touyz R.M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 2017 70 4 660 667 10.1161/HYPERTENSIONAHA.117.07802 28784646
    [Google Scholar]
  5. Schiffrin E.L. The immune system: Role in hypertension. Can. J. Cardiol. 2013 29 5 543 548 10.1016/j.cjca.2012.06.009 22902155
    [Google Scholar]
  6. Leibowitz A. Schiffrin E.L. Immune mechanisms in hypertension. Curr. Hypertens. Rep. 2011 13 6 465 472 10.1007/s11906‑011‑0224‑9 21842150
    [Google Scholar]
  7. Idris-Khodja N. Mian M.O.R. Paradis P. Schiffrin E.L. Dual opposing roles of adaptive immunity in hypertension. Eur. Heart J. 2014 35 19 1238 1244 10.1093/eurheartj/ehu119 24685711
    [Google Scholar]
  8. Mian M.O.R. Paradis P. Schiffrin E.L. Innate immunity in hypertension. Curr. Hypertens. Rep. 2014 16 2 413 10.1007/s11906‑013‑0413‑9 24407446
    [Google Scholar]
  9. Caillon A. Schiffrin E.L. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence. Curr. Hypertens. Rep. 2016 18 3 21 10.1007/s11906‑016‑0628‑7 26846785
    [Google Scholar]
  10. Xiao L. Harrison D.G. Inflammation in hypertension. Can. J. Cardiol. 2020 36 5 635 647 10.1016/j.cjca.2020.01.013 32389337
    [Google Scholar]
  11. Anders H.J. Baumann M. Tripepi G. Mallamaci F. Immunity in arterial hypertension: Associations or causalities? Nephrol. Dial. Transplant. 2015 30 12 1959 1964 10.1093/ndt/gfv057 25762356
    [Google Scholar]
  12. Jekell A. Malmqvist K. Wallén N.H. Mörtsell D. Kahan T. Markers of inflammation, endothelial activation, and arterial stiffness in hypertensive heart disease and the effects of treatment: Results from the SILVHIA study. J. Cardiovasc. Pharmacol. 2013 62 6 559 566 10.1097/FJC.0000000000000017 24084214
    [Google Scholar]
  13. Mirhafez S.R. Mohebati M. Feiz Disfani M. Saberi Karimian M. Ebrahimi M. Avan A. Eslami S. Pasdar A. Rooki H. Esmaeili H. Ferns G.A. Ghayour-Mobarhan M. An imbalance in serum concentrations of inflammatory and anti-inflammatory cytokines in hypertension. J. Am. Soc. Hypertens. 2014 8 9 614 623 10.1016/j.jash.2014.05.007 25224864
    [Google Scholar]
  14. Bautista L.E. Inflammation, endothelial dysfunction, and the risk of high blood pressure: Epidemiologic and biological evidence. J. Hum. Hypertens. 2003 17 4 223 230 10.1038/sj.jhh.1001537 12692566
    [Google Scholar]
  15. Sesso H.D. Buring J.E. Rifai N. Blake G.J. Gaziano J.M. Ridker P.M. C-reactive protein and the risk of developing hypertension. JAMA 2003 290 22 2945 2951 10.1001/jama.290.22.2945 14665655
    [Google Scholar]
  16. Plante T.B. Juraschek S.P. Howard G. Howard V.J. Tracy R.P. Olson N.C. Judd S.E. Kamin Mukaz D. Zakai N.A. Long D.L. Cushman M. Cytokines, C-reactive protein, and risk of incident hypertension in the REGARDS Study. Hypertension 2024 81 6 1244 1253 10.1161/HYPERTENSIONAHA.123.22714 38487890
    [Google Scholar]
  17. Loperena R. Van Beusecum J.P. Itani H.A. Engel N. Laroumanie F. Xiao L. Elijovich F. Laffer C.L. Gnecco J.S. Noonan J. Maffia P. Jasiewicz-Honkisz B. Czesnikiewicz-Guzik M. Mikolajczyk T. Sliwa T. Dikalov S. Weyand C.M. Guzik T.J. Harrison D.G. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: Roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 2018 114 11 1547 1563 10.1093/cvr/cvy112 29800237
    [Google Scholar]
  18. Alexander Y. Osto E. Schmidt-Trucksäss A. Shechter M. Trifunovic D. Duncker D.J. Aboyans V. Bäck M. Badimon L. Cosentino F. De Carlo M. Dorobantu M. Harrison D.G. Guzik T.J. Hoefer I. Morris P.D. Norata G.D. Suades R. Taddei S. Vilahur G. Waltenberger J. Weber C. Wilkinson F. Bochaton-Piallat M.L. Evans P.C. Endothelial function in cardiovascular medicine: A consensus paper of the european society of cardiology working groups on atherosclerosis and vascular biology, aorta and peripheral vascular diseases, coronary pathophysiology and microcirculation, and thrombosis. Cardiovasc. Res. 2021 117 1 29 42 10.1093/cvr/cvaa085 32282914
    [Google Scholar]
  19. Singh U. Devaraj S. Vasquez-Vivar J. Jialal I. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J. Mol. Cell. Cardiol. 2007 43 6 780 791 10.1016/j.yjmcc.2007.08.015 17942113
    [Google Scholar]
  20. Vongpatanasin W. Thomas G.D. Schwartz R. Cassis L.A. Osborne-Lawrence S. Hahner L. Gibson L.L. Black S. Samols D. Shaul P.W. C-reactive protein causes downregulation of vascular angiotensin subtype 2 receptors and systolic hypertension in mice. Circulation 2007 115 8 1020 1028 10.1161/CIRCULATIONAHA.106.664854 17283257
    [Google Scholar]
  21. Pasceri V. Willerson J.T. Yeh E.T.H. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000 102 18 2165 2168 10.1161/01.CIR.102.18.2165 11056086
    [Google Scholar]
  22. Yasojima K. Schwab C. McGeer E.G. McGeer P.L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 2001 158 3 1039 1051 10.1016/S0002‑9440(10)64051‑5 11238052
    [Google Scholar]
  23. Verma S. Li S.H. Badiwala M.V. Weisel R.D. Fedak P.W.M. Li R.K. Dhillon B. Mickle D.A.G. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002 105 16 1890 1896 10.1161/01.CIR.0000015126.83143.B4 11997273
    [Google Scholar]
  24. Ridker P.M. MacFadyen J.G. Everett B.M. Libby P. Thuren T. Glynn R.J. Ridker P.M. MacFadyen J.G. Everett B.M. Libby P. Thuren T. Glynn R.J. Kastelein J. Koenig W. Genest J. Lorenzatti A. Varigos J. Siostrzonek P. Sinnaeve P. Fonseca F. Nicolau J. Gotcheva N. Yong H. Urina-Triana M. Milicic D. Cifkova R. Vettus R. Anker S.D. Manolis A.J. Wyss F. Forster T. Sigurdsson A. Pais P. Fucili A. Ogawa H. Shimokawa H. Veze I. Petrauskiene B. Salvador L. Cornel J.H. Klemsdal T.O. Medina F. Budaj A. Vida-Simiti L. Kobalava Z. Otasevic P. Pella D. Lainscak M. Seung K-B. Commerford P. Dellborg M. Donath M. Hwang J-J. Kultursay H. Flather M. Ballantyne C. Bilazarian S. Chang W. East C. Forgosh L. Harris B. Ligueros M. Ligueros M. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 2018 391 10118 319 328 10.1016/S0140‑6736(17)32814‑3 29146124
    [Google Scholar]
  25. Jayedi A. Rahimi K. Bautista L.E. Nazarzadeh M. Zargar M.S. Shab-Bidar S. Inflammation markers and risk of developing hypertension: A meta-analysis of cohort studies. Heart 2019 105 heartjnl-2018-314216 10.1136/heartjnl‑2018‑314216
    [Google Scholar]
  26. Armas-Padrón A.M. Sicilia-Sosvilla M. Ruiz-Esteban P. Torres A. Hernández D. Association between cardiovascular health, c-reactive protein, and comorbidities in spanish urban-dwelling overweight/obese hypertensive patients. J. Cardiovasc. Dev. Dis. 2023 10 7 300 10.3390/jcdd10070300 37504556
    [Google Scholar]
  27. Liu X. Yang M. Lip G.Y.H. McDowell G. Plasma biomarkers for hypertension-mediated organ damage detection: A narrative review. Biomedicines 2024 12 5 1071 10.3390/biomedicines12051071 38791032
    [Google Scholar]
  28. Tsioufis C. Stougiannos P. Kakkavas A. Toutouza M. Mariolis A. Vlasseros I. Stefanadis C. Kallikazaros I. Relation of left ventricular concentric remodeling to levels of C-reactive protein and serum amyloid A in patients with essential hypertension. Am. J. Cardiol. 2005 96 2 252 256 10.1016/j.amjcard.2005.03.054 16018852
    [Google Scholar]
  29. Dinarello C.A. Historical insights into cytokines. Eur. J. Immunol. 2007 37 S1 S34 S45 10.1002/eji.200737772 17972343
    [Google Scholar]
  30. Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993 81 11 2844 2853 10.1182/blood.V81.11.2844.2844 8499622
    [Google Scholar]
  31. Zhang Z. Zhao L. Zhou X. Meng X. Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front. Immunol. 2023 13 1098725 10.3389/fimmu.2022.1098725 36703963
    [Google Scholar]
  32. McMaster W.G. Kirabo A. Madhur M.S. Harrison D.G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 2015 116 6 1022 1033 10.1161/CIRCRESAHA.116.303697 25767287
    [Google Scholar]
  33. Tsioufis P. Theofilis P. Tsioufis K. Tousoulis D. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches. Int. J. Mol. Sci. 2022 23 24 15937 10.3390/ijms232415937 36555579
    [Google Scholar]
  34. Heinrich P.C. Behrmann I. Müller-Newen G. Schaper F. Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 1998 334 2 297 314 10.1042/bj3340297
    [Google Scholar]
  35. Samuelsson A.M. Alexanderson C. Mölne J. Haraldsson B. Hansell P. Holmäng A. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin–angiotensin system of the rat. J. Physiol. 2006 575 3 855 867 10.1113/jphysiol.2006.111260 16825309
    [Google Scholar]
  36. Barbaro N.R. Harrison D.G. Markers or makers. Hypertension 2019 73 4 767 769 10.1161/HYPERTENSIONAHA.119.12604 30776975
    [Google Scholar]
  37. Ogata A. Tanaka T. Tocilizumab for the treatment of rheumatoid arthritis and other systemic autoimmune diseases: Current perspectives and future directions. Int. J. Rheumatol. 2012 2012 1 14 10.1155/2012/946048 22315615
    [Google Scholar]
  38. ZEUS - A Research Study to Look at How Ziltivekimab Works Compared to Placebo in People With Cardiovascular Disease, Chronic Kidney Disease and Inflammation (ZEUS). NCT05021835, 2024.
  39. ARTEMIS - A Research Study to Look at How Ziltivekimab Works Compared to Placebo in People With a Heart Attack (ARTEMIS). NCT06118281, 2025.
  40. Ridker P.M. From RESCUE to ZEUS: Will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 2021 117 11 e138 e140 10.1093/cvr/cvab231 34352102
    [Google Scholar]
  41. MacEwan D.J. TNF ligands and receptors – a matter of life and death. Br. J. Pharmacol. 2002 135 4 855 875 10.1038/sj.bjp.0704549 11861313
    [Google Scholar]
  42. Cabal-Hierro L. Lazo P.S. Signal transduction by tumor necrosis factor receptors. Cell. Signal. 2012 24 6 1297 1305 10.1016/j.cellsig.2012.02.006 22374304
    [Google Scholar]
  43. Landry D.B. Couper L.L. Bryant S.R. Lindner V. Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am. J. Pathol. 1997 151 4 1085 1095 9327742
    [Google Scholar]
  44. Kleinbongard P. Heusch G. Schulz R. TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol. Ther. 2010 127 3 295 314 10.1016/j.pharmthera.2010.05.002 20621692
    [Google Scholar]
  45. Homma T. Matsukura S. Hirose T. Ohnishi T. Kimura T. Kurokawa M. Ieki K. Odaka M. Suzuki S. Watanabe S. Sato M. Kawaguchi M. Schleimer R.P. Adachi M. Cooperative activation of CCL5 expression by TLR3 and tumor necrosis factor-α or interferon-γ through nuclear factor-kappaB or STAT-1 in airway epithelial cells. Int. Arch. Allergy Immunol. 2010 152 Suppl 1 9 17 10.1159/000312120 20523058
    [Google Scholar]
  46. Turner N. Mughal R. Warburton P. Oregan D. Ball S. Porter K. Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones. Cardiovasc. Res. 2007 76 1 81 90 10.1016/j.cardiores.2007.06.003 17612514
    [Google Scholar]
  47. Guzik T.J. Hoch N.E. Brown K.A. McCann L.A. Rahman A. Dikalov S. Goronzy J. Weyand C. Harrison D.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J. Exp. Med. 2007 204 10 2449 2460 10.1084/jem.20070657 17875676
    [Google Scholar]
  48. Yoshida S. Takeuchi T. Kotani T. Yamamoto N. Hata K. Nagai K. Shoda T. Takai S. Makino S. Hanafusa T. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J. Hum. Hypertens. 2014 28 3 165 169 10.1038/jhh.2013.80 24005958
    [Google Scholar]
  49. Navarro-González J.F. Mora C. Muros M. Jarque A. Herrera H. García J. Association of tumor necrosis factor-α with early target organ damage in newly diagnosed patients with essential hypertension. J. Hypertens. 2008 26 11 2168 2175 10.1097/HJH.0b013e32830e2545 18854757
    [Google Scholar]
  50. Ridker P.M. Thuren T. Zalewski A. Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 2011 162 4 597 605 10.1016/j.ahj.2011.06.012 21982649
    [Google Scholar]
  51. Rothman A.M.K. MacFadyen J. Thuren T. Webb A. Harrison D.G. Guzik T.J. Libby P. Glynn R.J. Ridker P.M. Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual inflammatory risk. Hypertension 2020 75 2 477 482 10.1161/HYPERTENSIONAHA.119.13642 31884854
    [Google Scholar]
  52. Silvestre-Roig C. Braster Q. Ortega-Gomez A. Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020 17 6 327 340 10.1038/s41569‑019‑0326‑7 31996800
    [Google Scholar]
  53. Groh L. Keating S.T. Joosten L.A.B. Netea M.G. Riksen N.P. Monocyte and macrophage immunometabolism in atherosclerosis. Semin. Immunopathol. 2018 40 2 203 214 10.1007/s00281‑017‑0656‑7 28971272
    [Google Scholar]
  54. Yayla K.G. Canpolat U. Yayla Ç. Akboğa M.K. Akyel A. Akdi A. Çiçek G. Ozcan F. Turak O. Aydoğdu S. A novel marker of impaired aortic elasticity in never treated hypertensive patients: Monocyte/high-density lipoprotein cholesterol ratio. Zhonghua Minguo Xinzangxue Hui Zazhi 2017 33 1 41 49 28115806
    [Google Scholar]
  55. Aydin E. Ates I. Fettah Arikan M. Yilmaz N. Dede F. The ratio of monocyte frequency to HDL cholesterol level as a predictor of asymptomatic organ damage in patients with primary hypertension. Hypertens. Res. 2017 40 8 758 764 10.1038/hr.2017.36 28275231
    [Google Scholar]
  56. Manoochehri H. Gheitasi R. Pourjafar M. Amini R. Yazdi A. Investigating the relationship between the severity of coronary artery disease and inflammatory factors of ‎MHR, PHR, NHR, and IL-25. Med. J. Islam. Repub. Iran 2021 35 85 85 10.47176/mjiri.35.85 34291009
    [Google Scholar]
  57. Zhang Y. Ding Y. Jiang W. Neutrophil and monocyte ratios to high-density lipoprotein cholesterol as biomarkers in non-dipping hypertension. Clin. Exp. Hypertens. 2023 45 1 2210785 10.1080/10641963.2023.2210785 37165667
    [Google Scholar]
  58. Mozos I. Malainer C. Horbańczuk J. Gug C. Stoian D. Luca C.T. Atanasov A.G. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front. Immunol. 2017 8 1058 10.3389/fimmu.2017.01058 28912780
    [Google Scholar]
  59. Chen Y.F. Qi S. Yu Z.J. Li J.T. Qian T.T. Zeng Y. Cao P. Systemic inflammation response index predicts clinical outcomes in patients with Acute Ischemic Stroke (AIS) after the treatment of intravenous thrombolysis. Neurologist 2023 28 6 355 361 10.1097/NRL.0000000000000492 37027178
    [Google Scholar]
  60. Wei L. Xie H. Yan P. Prognostic value of the systemic inflammation response index in human malignancy. Medicine (Baltimore) 2020 99 50 e23486 10.1097/MD.0000000000023486 33327280
    [Google Scholar]
  61. Ma L.L. Xiao H.B. Zhang J. Liu Y.H. Hu L.K. Chen N. Chu X. Dong J. Yan Y.X. Association between systemic immune inflammatory/inflammatory response index and hypertension: A cohort study of functional community. Nutr. Metab. Cardiovasc. Dis. 2024 34 2 334 342 10.1016/j.numecd.2023.09.025 38000992
    [Google Scholar]
  62. Cheang I. Zhu X. Lu X. Yue X. Tang Y. Gao R. Liao S. Yao W. Zhou Y. Zhang H. Yiu K.H. Li X. Associations of inflammation with risk of cardiovascular and all-cause mortality in adults with hypertension: An inflammatory prognostic scoring system. J. Inflamm. Res. 2022 15 6125 6136 10.2147/JIR.S384977 36386589
    [Google Scholar]
  63. Sha S. Bu X.P. Wang A.W. Chen H.Z. Association between inflammatory biomarkers and hypertension among sedentary adults in US: NHANES 2009–2018. J. Clin. Hypertens. (Greenwich) 2024 26 8 945 954 10.1111/jch.14851 38946147
    [Google Scholar]
  64. Ou-Yang H. Fu H.Y. Luo Y. Xu Z.Y. Liu J. Gao R. Duan J.Y. Mao Y.C. Li H.J. Du Y.R. Inflammation markers and the risk of hypertension in people living with HIV. Front. Immunol. 2023 14 1133640 10.3389/fimmu.2023.1133640 37025998
    [Google Scholar]
  65. Mancia G. Kreutz R. Brunström M. Burnier M. Grassi G. Januszewicz A. Muiesan M.L. Tsioufis K. Agabiti-Rosei E. Algharably E.A.E. Azizi M. Benetos A. Borghi C. Hitij J.B. Cifkova R. Coca A. Cornelissen V. Cruickshank J.K. Cunha P.G. Danser A.H.J. Pinho R.M. Delles C. Dominiczak A.F. Dorobantu M. Doumas M. Fernández-Alfonso M.S. Halimi J.M. Járai Z. Jelaković B. Jordan J. Kuznetsova T. Laurent S. Lovic D. Lurbe E. Mahfoud F. Manolis A. Miglinas M. Narkiewicz K. Niiranen T. Palatini P. Parati G. Pathak A. Persu A. Polonia J. Redon J. Sarafidis P. Schmieder R. Spronck B. Stabouli S. Stergiou G. Taddei S. Thomopoulos C. Tomaszewski M. Van de Borne P. Wanner C. Weber T. Williams B. Zhang Z.Y. Kjeldsen S.E. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension. J. Hypertens. 2023 41 12 1874 2071 10.1097/HJH.0000000000003480 37345492
    [Google Scholar]
  66. Kampmann U. Mathiassen O.N. Christensen K.L. Buus N.H. Bjerre M. Vase H. Møller N. Kaltoft A. Poulsen P.L. Effects of renal denervation on insulin sensitivity and inflammatory markers in nondiabetic patients with treatment-resistant hypertension. J. Diabetes Res. 2017 2017 1 9 10.1155/2017/6915310 29082259
    [Google Scholar]
  67. Eikelis N. Hering D. Marusic P. Sari C. Walton A. Phillips S. Lambert E. Duval J. Krum H. Lambert G. Esler M. Schlaich M. The effect of renal denervation on endothelial function and inflammatory markers in patients with resistant hypertension. Int. J. Cardiol. 2015 188 96 98 10.1016/j.ijcard.2015.04.041 25889337
    [Google Scholar]
  68. Lang D. Nahler A. Lambert T. Grund M. Kammler J. Kellermair J. Blessberger H. Kypta A. Steinwender C. Auer J. Anti-inflammatory effects and prediction of blood pressure response by baseline inflammatory state in catheter-based renal denervation. J. Clin. Hypertens. (Greenwich) 2016 18 11 1173 1179 10.1111/jch.12844 27246513
    [Google Scholar]
  69. Delgado Silva J. Almeida J.S. Rodrigues-Santos P. Santos Rosa M. Gonçalves L. Activated double-negative T cells (CD3+CD4−CD8−HLA-DR+) define response to renal denervation for resistant hypertension. Clin. Immunol. 2020 218 108521 10.1016/j.clim.2020.108521 32619647
    [Google Scholar]
  70. Kantauskaite M. Vonend O. Yakoub M. Heilmann P. Maifeld A. Minko P. Schimmöller L. Antoch G. Müller D.N. Schmidt C. Duvnjak B. Zierhut U. Potthoff S.A. Rump L.C. Fischer J.C. Stegbauer J. The effect of renal denervation on T cells in patients with resistant hypertension. Int. J. Mol. Sci. 2023 24 3 2493 10.3390/ijms24032493 36768814
    [Google Scholar]
  71. Lee D.W. Kim J.S. Kim I.Y. Kim H.S. Kim J-Y. Rhee H. Seong E.Y. Song S.H. Lee S.B. Edelstein C.L. Kwak I.S. Catheter-based renal sympathetic denervation induces acute renal inflammation through activation of caspase-1 and NLRP3 inflammasome. Anatol. J. Cardiol. 2019 21 3 134 141 30821713
    [Google Scholar]
  72. Geng J. Chen C. Zhou X. Qian W. Shan Q. Influence of renal sympathetic denervation in patients with early-stage heart failure versus late-stage heart failure. Int. Heart J. 2018 59 1 99 104 10.1536/ihj.16‑413 29279521
    [Google Scholar]
  73. Burchell A.E. Chan K. Ratcliffe L.E.K. Hart E.C. Saxena M. Collier D.J. Jain A.K. Mathur A. Knight C.J. Caulfield M.J. Paton J.F.R. Nightingale A.K. Lobo M.D. Baumbach A. Controversies surrounding renal denervation: Lessons learned from real-world experience in two united kingdom centers. J. Clin. Hypertens. (Greenwich) 2016 18 6 585 592 10.1111/jch.12789 26857092
    [Google Scholar]
  74. Vogt A. Dutzmann J. Nußbaum M. Hoyer D. Tongers J. Schlitt A. Sedding D. Plehn A. Safety and efficacy of renal sympathetic denervation: a 9-year long-term follow-up of 24-hour ambulatory blood pressure measurements. Front. Cardiovasc. Med. 2023 10 1210801 10.3389/fcvm.2023.1210801 37404730
    [Google Scholar]
  75. Simonetti F. Piccolo R. Esposito G. Renal denervation and long-term results. Eur. Heart J. Suppl. 2023 25 B85 B89 10.1093/eurheartjsupp/suad073 37091664
    [Google Scholar]
  76. Kario K. Yokoi Y. Okamura K. Fujihara M. Ogoyama Y. Yamamoto E. Urata H. Cho J.M. Kim C.J. Choi S.H. Shinohara K. Mukai Y. Ikemoto T. Nakamura M. Seki S. Matoba S. Shibata Y. Sugawara S. Yumoto K. Tamura K. Yoshihara F. Nakamura S. Kang W.C. Shibasaki T. Dote K. Yokoi H. Matsuo A. Fujita H. Takahashi T. Kang H.J. Sakata Y. Horie K. Inoue N. Sasaki K. Ueno T. Tomita H. Morino Y. Nojima Y. Kim C.J. Matsumoto T. Kai H. Nanto S. Catheter-based ultrasound renal denervation in patients with resistant hypertension: The randomized, controlled REQUIRE trial. Hypertens. Res. 2022 45 2 221 231 10.1038/s41440‑021‑00754‑7 34654905
    [Google Scholar]
  77. Mahfoud F. Böhm M. Azizi M. Pathak A. Zaleski I.D. Ewen S. Tsioufis K. Andersson B. Blankestijn P.J. Burnier M. Chatellier G. Gafoor S. Grassi G. Joner M. Kjeldsen S.E. Lüscher T.F. Lobo M.D. Lotan C. Parati G. Redon J. Ruilope L. Sudano I. Ukena C. van Leeuwen E. Volpe M. Windecker S. Witkowski A. Wijns W. Zeller T. Schmieder R.E. Proceedings from the european clinical consensus conference for renal denervation: Considerations on future clinical trial design. Eur. Hear. J. 2015 36 2219 2227
    [Google Scholar]
  78. Panchavinnin P. Wanthong S. Roubsanthisuk W. Tresukosol D. Buranakitjaroen P. Chotruangnapa C. Watanapa W. Pongakasira R. Wongpraparut N. Long-term outcome of renal nerve denervation (RDN) for resistant hypertension. Hypertens. Res. 2022 45 6 962 966 10.1038/s41440‑022‑00910‑7 35393514
    [Google Scholar]
  79. Zeijen V.J.M. Feyz L. Nannan Panday R. Veen K. Versmissen J. Kardys I. Van Mieghem N.M. Daemen J. Long-term follow-up of patients undergoing renal sympathetic denervation. Clin. Res. Cardiol. 2022 111 11 1256 1268 10.1007/s00392‑022‑02056‑5 35851428
    [Google Scholar]
  80. Huang X. Lee K. Wang M.C. Shah N.S. Khan S.S. Age at diagnosis of hypertension by race and ethnicity in the US From 2011 to 2020. JAMA Cardiol. 2022 7 9 986 987 10.1001/jamacardio.2022.2345 35921097
    [Google Scholar]
  81. Kurl S. Jae S.Y. Voutilainen A. Mäkikallio T. Laukkanen J.A. Joint effect of blood pressure and C-reactive protein and the risk of sudden cardiac death: A prospective cohort study. Int. J. Cardiol. 2021 326 184 188 10.1016/j.ijcard.2020.10.071 33130259
    [Google Scholar]
  82. Kurl S. Jae S.Y. Voutilainen A. Laukkanen J.A. The combined effect of blood pressure and C-reactive protein with the risk of mortality from coronary heart and cardiovascular diseases. Nutr. Metab. Cardiovasc. Dis. 2021 31 7 2051 2057 10.1016/j.numecd.2021.04.004 34090772
    [Google Scholar]
  83. Zhang R. Wang Y. Liao L. Liao Y. Fang Y. Shen Y. The relationship between C-reactive protein/albumin ratio and mortality in hypertensive patients: A national cohort study. Nutr. Metab. Cardiovasc. Dis. 2024 34 7 1601 1609 10.1016/j.numecd.2024.02.011 38519295
    [Google Scholar]
  84. Wang Y. Liao L. Guo Q. Liao Y. Lin X. Li H. Deng L. Deng Y. Guo D. Chen K. Fang Y. The systemic inflammatory response index is associated with chronic kidney disease in patients with hypertension: Data from the national health and nutrition examination study 1999–2018. Ren. Fail. 2024 46 2 2396459 10.1080/0886022X.2024.2396459 39311633
    [Google Scholar]
  85. Murray E.C. Nosalski R. MacRitchie N. Tomaszewski M. Maffia P. Harrison D.G. Guzik T.J. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc. Res. 2021 117 13 cvab330 10.1093/cvr/cvab330 34698811
    [Google Scholar]
  86. Wang T.J. Gona P. Larson M.G. Levy D. Benjamin E.J. Tofler G.H. Jacques P.F. Meigs J.B. Rifai N. Selhub J. Robins S.J. Newton-Cheh C. Vasan R.S. Multiple biomarkers and the risk of incident hypertension. Hypertension 2007 49 3 432 438 10.1161/01.HYP.0000256956.61872.aa 17242302
    [Google Scholar]
  87. Sesso H.D. Jiménez M.C. Wang L. Ridker P.M. Buring J.E. Gaziano J.M. Plasma inflammatory markers and the risk of developing hypertension in men. J. Am. Heart Assoc. 2015 4 9 e001802 10.1161/JAHA.115.001802 26391130
    [Google Scholar]
  88. Kohli-Lynch C.N. Boyd K. Briggs A. Delles C. A framework for the cost-effectiveness analysis of novel biomarker testing in cardiovascular disease. Value Health 2017 20 9 A404 A405 10.1016/j.jval.2017.08.040
    [Google Scholar]
  89. Public policy considerations of novel cardiovascular disease and stroke blood-based biomarkers. 2024 Available from:https://www.heart.org/en/-/media/Files/About-Us/Policy-Research/Policy-Positions/Heart-Stroke-Research/Novel-CVD-Stroke-Biomarkers.pdf?sc_lang=en (accessed on 14-3-2024).
  90. Zhang C. Han B. Xu T. Li D. The biological function and potential mechanism of long non-coding RNAs in cardiovascular disease. J. Cell. Mol. Med. 2020 24 22 12900 12909 10.1111/jcmm.15968 33052009
    [Google Scholar]
  91. Correia C.C.M. Rodrigues L.F. de Avila Pelozin B.R. Oliveira E.M. Fernandes T. Long non-coding RNAs in cardiovascular diseases: Potential function as biomarkers and therapeutic targets of exercise training. Noncoding RNA 2021 7 4 65 10.3390/ncrna7040065 34698215
    [Google Scholar]
  92. Poller W. Dimmeler S. Heymans S. Zeller T. Haas J. Karakas M. Leistner D.M. Jakob P. Nakagawa S. Blankenberg S. Engelhardt S. Thum T. Weber C. Meder B. Hajjar R. Landmesser U. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J. 2018 39 29 2704 2716 10.1093/eurheartj/ehx165 28430919
    [Google Scholar]
  93. Lu P. Ding F. Xiang Y.K. Hao L. Zhao M. Noncoding RNAs in cardiac hypertrophy and heart failure. Cells 2022 11 5 777 10.3390/cells11050777 35269399
    [Google Scholar]
  94. Improving treatment efficacy in hypertension by biomarker-guided personalised decision support. 2023 Available from:https://cordis.europa.eu/project/id/101095407 (accessed on 14-3-2024).
  95. Bautista L.E. Vera L.M. Arenas I.A. Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension. J. Hum. Hypertens. 2005 19 2 149 154 10.1038/sj.jhh.1001785 15361891
    [Google Scholar]
  96. Pauletto P. Rattazzi M. Inflammation and hypertension: the search for a link. Nephrol. Dial. Transplant. 2006 21 4 850 853 10.1093/ndt/gfl019 16464884
    [Google Scholar]
  97. Meng X. Sun H. Tu X. Li W. The Predictive Role of Hematological Parameters in Hypertension. Angiology 2024 75 8 705 716 10.1177/00033197231190423 37459606
    [Google Scholar]
  98. Huang J.B. Chen Y.S. Ji H.Y. Xie W.M. Jiang J. Ran L.S. Zhang C.T. Quan X.Q. Neutrophil to high-density lipoprotein ratio has a superior prognostic value in elderly patients with acute myocardial infarction: a comparison study. Lipids Health Dis. 2020 19 1 59 10.1186/s12944‑020‑01238‑2 32247314
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348789250604113545
Loading
/content/journals/cmc/10.2174/0109298673348789250604113545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test