Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Hypertension remains a leading modifiable risk factor for cardiovascular diseases, yet its underlying mechanisms are not fully understood. Emerging evidence suggests that inflammation plays a central role in the pathogenesis and progression of hypertension. This review explores the association between inflammatory biomarkers, such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), and hypertension. These biomarkers are not only indicators of inflammation but also active participants in the processes that elevate blood pressure, including endothelial dysfunction, oxidative stress, and immune system activation. Cytokines play a pivotal role in vascular remodeling and renal dysfunction, underscoring the inflammatory underpinnings of hypertension. Additionally, novel composite biomarkers like the monocyte-to-high-density lipoprotein ratio (MHR), systemic inflammation response index (SIRI), and systemic immune-inflammation index (SII) have been identified as valuable tools for assessing the inflammatory state in hypertensive patients. While renal denervation has emerged as a promising treatment for resistant hypertension, its impact on inflammatory biomarkers remains inconclusive, highlighting the need for further research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348789250604113545
2025-07-15
2025-12-16
Loading full text...

Full text loading...

References

  1. EganB.M. ZhaoY. AxonR.N. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008.JAMA2010303202043205010.1001/jama.2010.65020501926
    [Google Scholar]
  2. Olivares-SilvaF. De GregorioN. Espitia-CorredorJ. EspinozaC. VivarR. SilvaD. OsorioJ.M. LavanderoS. PeiróC. Sánchez-FerrerC. Díaz-ArayaG. Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension.Biochim. Biophys. Acta Mol. Basis Dis.202118671216624110.1016/j.bbadis.2021.16624134400298
    [Google Scholar]
  3. ZewingerS. ReiserJ. JankowskiV. AlansaryD. HahmE. TriemS. KlugM. SchunkS.J. SchmitD. KramannR. KörbelC. AmpofoE. LaschkeM.W. SelejanS.R. PaschenA. HerterT. SchusterS. SilbernagelG. SesterM. SesterU. AßmannG. BalsR. KostnerG. Jahnen-DechentW. MengerM.D. RohrerL. MärzW. BöhmM. JankowskiJ. KopfM. LatzE. NiemeyerB.A. FliserD. LaufsU. SpeerT. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation.Nat. Immunol.2020211304110.1038/s41590‑019‑0548‑131819254
    [Google Scholar]
  4. GuzikT.J. TouyzR.M. Oxidative stress, inflammation, and vascular aging in hypertension.Hypertension201770466066710.1161/HYPERTENSIONAHA.117.0780228784646
    [Google Scholar]
  5. SchiffrinE.L. The immune system: Role in hypertension.Can. J. Cardiol.201329554354810.1016/j.cjca.2012.06.00922902155
    [Google Scholar]
  6. LeibowitzA. SchiffrinE.L. Immune mechanisms in hypertension.Curr. Hypertens. Rep.201113646547210.1007/s11906‑011‑0224‑921842150
    [Google Scholar]
  7. Idris-KhodjaN. MianM.O.R. ParadisP. SchiffrinE.L. Dual opposing roles of adaptive immunity in hypertension.Eur. Heart J.201435191238124410.1093/eurheartj/ehu11924685711
    [Google Scholar]
  8. MianM.O.R. ParadisP. SchiffrinE.L. Innate immunity in hypertension.Curr. Hypertens. Rep.201416241310.1007/s11906‑013‑0413‑924407446
    [Google Scholar]
  9. CaillonA. SchiffrinE.L. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence.Curr. Hypertens. Rep.20161832110.1007/s11906‑016‑0628‑726846785
    [Google Scholar]
  10. XiaoL. HarrisonD.G. Inflammation in hypertension.Can. J. Cardiol.202036563564710.1016/j.cjca.2020.01.01332389337
    [Google Scholar]
  11. AndersH.J. BaumannM. TripepiG. MallamaciF. Immunity in arterial hypertension: Associations or causalities?Nephrol. Dial. Transplant.201530121959196410.1093/ndt/gfv05725762356
    [Google Scholar]
  12. JekellA. MalmqvistK. WallénN.H. MörtsellD. KahanT. Markers of inflammation, endothelial activation, and arterial stiffness in hypertensive heart disease and the effects of treatment: Results from the SILVHIA study.J. Cardiovasc. Pharmacol.201362655956610.1097/FJC.000000000000001724084214
    [Google Scholar]
  13. MirhafezS.R. MohebatiM. Feiz DisfaniM. Saberi KarimianM. EbrahimiM. AvanA. EslamiS. PasdarA. RookiH. EsmaeiliH. FernsG.A. Ghayour-MobarhanM. An imbalance in serum concentrations of inflammatory and anti-inflammatory cytokines in hypertension.J. Am. Soc. Hypertens.20148961462310.1016/j.jash.2014.05.00725224864
    [Google Scholar]
  14. BautistaL.E. Inflammation, endothelial dysfunction, and the risk of high blood pressure: Epidemiologic and biological evidence.J. Hum. Hypertens.200317422323010.1038/sj.jhh.100153712692566
    [Google Scholar]
  15. SessoH.D. BuringJ.E. RifaiN. BlakeG.J. GazianoJ.M. RidkerP.M. C-reactive protein and the risk of developing hypertension.JAMA2003290222945295110.1001/jama.290.22.294514665655
    [Google Scholar]
  16. PlanteT.B. JuraschekS.P. HowardG. HowardV.J. TracyR.P. OlsonN.C. JuddS.E. Kamin MukazD. ZakaiN.A. LongD.L. CushmanM. Cytokines, C-reactive protein, and risk of incident hypertension in the REGARDS Study.Hypertension20248161244125310.1161/HYPERTENSIONAHA.123.2271438487890
    [Google Scholar]
  17. LoperenaR. Van BeusecumJ.P. ItaniH.A. EngelN. LaroumanieF. XiaoL. ElijovichF. LafferC.L. GneccoJ.S. NoonanJ. MaffiaP. Jasiewicz-HonkiszB. Czesnikiewicz-GuzikM. MikolajczykT. SliwaT. DikalovS. WeyandC.M. GuzikT.J. HarrisonD.G. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: Roles of STAT3, interleukin 6 and hydrogen peroxide.Cardiovasc. Res.2018114111547156310.1093/cvr/cvy11229800237
    [Google Scholar]
  18. AlexanderY. OstoE. Schmidt-TrucksässA. ShechterM. TrifunovicD. DunckerD.J. AboyansV. BäckM. BadimonL. CosentinoF. De CarloM. DorobantuM. HarrisonD.G. GuzikT.J. HoeferI. MorrisP.D. NorataG.D. SuadesR. TaddeiS. VilahurG. WaltenbergerJ. WeberC. WilkinsonF. Bochaton-PiallatM.L. EvansP.C. Endothelial function in cardiovascular medicine: A consensus paper of the european society of cardiology working groups on atherosclerosis and vascular biology, aorta and peripheral vascular diseases, coronary pathophysiology and microcirculation, and thrombosis.Cardiovasc. Res.20211171294210.1093/cvr/cvaa08532282914
    [Google Scholar]
  19. SinghU. DevarajS. Vasquez-VivarJ. JialalI. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling.J. Mol. Cell. Cardiol.200743678079110.1016/j.yjmcc.2007.08.01517942113
    [Google Scholar]
  20. VongpatanasinW. ThomasG.D. SchwartzR. CassisL.A. Osborne-LawrenceS. HahnerL. GibsonL.L. BlackS. SamolsD. ShaulP.W. C-reactive protein causes downregulation of vascular angiotensin subtype 2 receptors and systolic hypertension in mice.Circulation200711581020102810.1161/CIRCULATIONAHA.106.66485417283257
    [Google Scholar]
  21. PasceriV. WillersonJ.T. YehE.T.H. Direct proinflammatory effect of C-reactive protein on human endothelial cells.Circulation2000102182165216810.1161/01.CIR.102.18.216511056086
    [Google Scholar]
  22. YasojimaK. SchwabC. McGeerE.G. McGeerP.L. Generation of C-reactive protein and complement components in atherosclerotic plaques.Am. J. Pathol.200115831039105110.1016/S0002‑9440(10)64051‑511238052
    [Google Scholar]
  23. VermaS. LiS.H. BadiwalaM.V. WeiselR.D. FedakP.W.M. LiR.K. DhillonB. MickleD.A.G. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.Circulation2002105161890189610.1161/01.CIR.0000015126.83143.B411997273
    [Google Scholar]
  24. RidkerP.M. MacFadyenJ.G. EverettB.M. LibbyP. ThurenT. GlynnR.J. RidkerP.M. MacFadyenJ.G. EverettB.M. LibbyP. ThurenT. GlynnR.J. KasteleinJ. KoenigW. GenestJ. LorenzattiA. VarigosJ. SiostrzonekP. SinnaeveP. FonsecaF. NicolauJ. GotchevaN. YongH. Urina-TrianaM. MilicicD. CifkovaR. VettusR. AnkerS.D. ManolisA.J. WyssF. ForsterT. SigurdssonA. PaisP. FuciliA. OgawaH. ShimokawaH. VezeI. PetrauskieneB. SalvadorL. CornelJ.H. KlemsdalT.O. MedinaF. BudajA. Vida-SimitiL. KobalavaZ. OtasevicP. PellaD. LainscakM. SeungK-B. CommerfordP. DellborgM. DonathM. HwangJ-J. KultursayH. FlatherM. BallantyneC. BilazarianS. ChangW. EastC. ForgoshL. HarrisB. LiguerosM. LiguerosM. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial.Lancet20183911011831932810.1016/S0140‑6736(17)32814‑329146124
    [Google Scholar]
  25. JayediA. RahimiK. BautistaL.E. NazarzadehM. ZargarM.S. Shab-BidarS. Inflammation markers and risk of developing hypertension: A meta-analysis of cohort studies.Heart2019105heartjnl-2018-31421610.1136/heartjnl‑2018‑314216
    [Google Scholar]
  26. Armas-PadrónA.M. Sicilia-SosvillaM. Ruiz-EstebanP. TorresA. HernándezD. Association between cardiovascular health, c-reactive protein, and comorbidities in spanish urban-dwelling overweight/obese hypertensive patients.J. Cardiovasc. Dev. Dis.202310730010.3390/jcdd1007030037504556
    [Google Scholar]
  27. LiuX. YangM. LipG.Y.H. McDowellG. Plasma biomarkers for hypertension-mediated organ damage detection: A narrative review.Biomedicines2024125107110.3390/biomedicines1205107138791032
    [Google Scholar]
  28. TsioufisC. StougiannosP. KakkavasA. ToutouzaM. MariolisA. VlasserosI. StefanadisC. KallikazarosI. Relation of left ventricular concentric remodeling to levels of C-reactive protein and serum amyloid A in patients with essential hypertension.Am. J. Cardiol.200596225225610.1016/j.amjcard.2005.03.05416018852
    [Google Scholar]
  29. DinarelloC.A. Historical insights into cytokines.Eur. J. Immunol.200737S1S34S4510.1002/eji.20073777217972343
    [Google Scholar]
  30. OgawaM. Differentiation and proliferation of hematopoietic stem cells.Blood199381112844285310.1182/blood.V81.11.2844.28448499622
    [Google Scholar]
  31. ZhangZ. ZhaoL. ZhouX. MengX. ZhouX. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets.Front. Immunol.202313109872510.3389/fimmu.2022.109872536703963
    [Google Scholar]
  32. McMasterW.G. KiraboA. MadhurM.S. HarrisonD.G. Inflammation, immunity, and hypertensive end-organ damage.Circ. Res.201511661022103310.1161/CIRCRESAHA.116.30369725767287
    [Google Scholar]
  33. TsioufisP. TheofilisP. TsioufisK. TousoulisD. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches.Int. J. Mol. Sci.202223241593710.3390/ijms23241593736555579
    [Google Scholar]
  34. HeinrichP.C. BehrmannI. Müller-NewenG. SchaperF. GraeveL. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway.Biochem. J.1998334229731410.1042/bj3340297
    [Google Scholar]
  35. SamuelssonA.M. AlexandersonC. MölneJ. HaraldssonB. HansellP. HolmängA. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin–angiotensin system of the rat.J. Physiol.2006575385586710.1113/jphysiol.2006.11126016825309
    [Google Scholar]
  36. BarbaroN.R. HarrisonD.G. Markers or makers.Hypertension201973476776910.1161/HYPERTENSIONAHA.119.1260430776975
    [Google Scholar]
  37. OgataA. TanakaT. Tocilizumab for the treatment of rheumatoid arthritis and other systemic autoimmune diseases: Current perspectives and future directions.Int. J. Rheumatol.2012201211410.1155/2012/94604822315615
    [Google Scholar]
  38. ZEUS - A Research Study to Look at How Ziltivekimab Works Compared to Placebo in People With Cardiovascular Disease, Chronic Kidney Disease and Inflammation (ZEUS).NCT05021835, 2024.
  39. ARTEMIS - A Research Study to Look at How Ziltivekimab Works Compared to Placebo in People With a Heart Attack (ARTEMIS).NCT06118281, 2025.
  40. RidkerP.M. From RESCUE to ZEUS: Will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction?Cardiovasc. Res.202111711e138e14010.1093/cvr/cvab23134352102
    [Google Scholar]
  41. MacEwanD.J. TNF ligands and receptors – a matter of life and death.Br. J. Pharmacol.2002135485587510.1038/sj.bjp.070454911861313
    [Google Scholar]
  42. Cabal-HierroL. LazoP.S. Signal transduction by tumor necrosis factor receptors.Cell. Signal.20122461297130510.1016/j.cellsig.2012.02.00622374304
    [Google Scholar]
  43. LandryD.B. CouperL.L. BryantS.R. LindnerV. Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1.Am. J. Pathol.19971514108510959327742
    [Google Scholar]
  44. KleinbongardP. HeuschG. SchulzR. TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure.Pharmacol. Ther.2010127329531410.1016/j.pharmthera.2010.05.00220621692
    [Google Scholar]
  45. HommaT. MatsukuraS. HiroseT. OhnishiT. KimuraT. KurokawaM. IekiK. OdakaM. SuzukiS. WatanabeS. SatoM. KawaguchiM. SchleimerR.P. AdachiM. Cooperative activation of CCL5 expression by TLR3 and tumor necrosis factor-α or interferon-γ through nuclear factor-kappaB or STAT-1 in airway epithelial cells.Int. Arch. Allergy Immunol.2010152Suppl 191710.1159/00031212020523058
    [Google Scholar]
  46. TurnerN. MughalR. WarburtonP. OreganD. BallS. PorterK. Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones.Cardiovasc. Res.2007761819010.1016/j.cardiores.2007.06.00317612514
    [Google Scholar]
  47. GuzikT.J. HochN.E. BrownK.A. McCannL.A. RahmanA. DikalovS. GoronzyJ. WeyandC. HarrisonD.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction.J. Exp. Med.2007204102449246010.1084/jem.2007065717875676
    [Google Scholar]
  48. YoshidaS. TakeuchiT. KotaniT. YamamotoN. HataK. NagaiK. ShodaT. TakaiS. MakinoS. HanafusaT. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients.J. Hum. Hypertens.201428316516910.1038/jhh.2013.8024005958
    [Google Scholar]
  49. Navarro-GonzálezJ.F. MoraC. MurosM. JarqueA. HerreraH. GarcíaJ. Association of tumor necrosis factor-α with early target organ damage in newly diagnosed patients with essential hypertension.J. Hypertens.200826112168217510.1097/HJH.0b013e32830e254518854757
    [Google Scholar]
  50. RidkerP.M. ThurenT. ZalewskiA. LibbyP. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS).Am. Heart J.2011162459760510.1016/j.ahj.2011.06.01221982649
    [Google Scholar]
  51. RothmanA.M.K. MacFadyenJ. ThurenT. WebbA. HarrisonD.G. GuzikT.J. LibbyP. GlynnR.J. RidkerP.M. Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual inflammatory risk.Hypertension202075247748210.1161/HYPERTENSIONAHA.119.1364231884854
    [Google Scholar]
  52. Silvestre-RoigC. BrasterQ. Ortega-GomezA. SoehnleinO. Neutrophils as regulators of cardiovascular inflammation.Nat. Rev. Cardiol.202017632734010.1038/s41569‑019‑0326‑731996800
    [Google Scholar]
  53. GrohL. KeatingS.T. JoostenL.A.B. NeteaM.G. RiksenN.P. Monocyte and macrophage immunometabolism in atherosclerosis.Semin. Immunopathol.201840220321410.1007/s00281‑017‑0656‑728971272
    [Google Scholar]
  54. YaylaK.G. CanpolatU. YaylaÇ. AkboğaM.K. AkyelA. AkdiA. ÇiçekG. OzcanF. TurakO. AydoğduS. A novel marker of impaired aortic elasticity in never treated hypertensive patients: Monocyte/high-density lipoprotein cholesterol ratio.Zhonghua Minguo Xinzangxue Hui Zazhi2017331414928115806
    [Google Scholar]
  55. AydinE. AtesI. Fettah ArikanM. YilmazN. DedeF. The ratio of monocyte frequency to HDL cholesterol level as a predictor of asymptomatic organ damage in patients with primary hypertension.Hypertens. Res.201740875876410.1038/hr.2017.3628275231
    [Google Scholar]
  56. ManoochehriH. GheitasiR. PourjafarM. AminiR. YazdiA. Investigating the relationship between the severity of coronary artery disease and inflammatory factors of ‎MHR, PHR, NHR, and IL-25.Med. J. Islam. Repub. Iran202135858510.47176/mjiri.35.8534291009
    [Google Scholar]
  57. ZhangY. DingY. JiangW. Neutrophil and monocyte ratios to high-density lipoprotein cholesterol as biomarkers in non-dipping hypertension.Clin. Exp. Hypertens.2023451221078510.1080/10641963.2023.221078537165667
    [Google Scholar]
  58. MozosI. MalainerC. HorbańczukJ. GugC. StoianD. LucaC.T. AtanasovA.G. Inflammatory markers for arterial stiffness in cardiovascular diseases.Front. Immunol.20178105810.3389/fimmu.2017.0105828912780
    [Google Scholar]
  59. ChenY.F. QiS. YuZ.J. LiJ.T. QianT.T. ZengY. CaoP. Systemic inflammation response index predicts clinical outcomes in patients with Acute Ischemic Stroke (AIS) after the treatment of intravenous thrombolysis.Neurologist202328635536110.1097/NRL.000000000000049237027178
    [Google Scholar]
  60. WeiL. XieH. YanP. Prognostic value of the systemic inflammation response index in human malignancy.Medicine (Baltimore)20209950e2348610.1097/MD.000000000002348633327280
    [Google Scholar]
  61. MaL.L. XiaoH.B. ZhangJ. LiuY.H. HuL.K. ChenN. ChuX. DongJ. YanY.X. Association between systemic immune inflammatory/inflammatory response index and hypertension: A cohort study of functional community.Nutr. Metab. Cardiovasc. Dis.202434233434210.1016/j.numecd.2023.09.02538000992
    [Google Scholar]
  62. CheangI. ZhuX. LuX. YueX. TangY. GaoR. LiaoS. YaoW. ZhouY. ZhangH. YiuK.H. LiX. Associations of inflammation with risk of cardiovascular and all-cause mortality in adults with hypertension: An inflammatory prognostic scoring system.J. Inflamm. Res.2022156125613610.2147/JIR.S38497736386589
    [Google Scholar]
  63. ShaS. BuX.P. WangA.W. ChenH.Z. Association between inflammatory biomarkers and hypertension among sedentary adults in US: NHANES 2009–2018.J. Clin. Hypertens. (Greenwich)202426894595410.1111/jch.1485138946147
    [Google Scholar]
  64. Ou-YangH. FuH.Y. LuoY. XuZ.Y. LiuJ. GaoR. DuanJ.Y. MaoY.C. LiH.J. DuY.R. Inflammation markers and the risk of hypertension in people living with HIV.Front. Immunol.202314113364010.3389/fimmu.2023.113364037025998
    [Google Scholar]
  65. ManciaG. KreutzR. BrunströmM. BurnierM. GrassiG. JanuszewiczA. MuiesanM.L. TsioufisK. Agabiti-RoseiE. AlgharablyE.A.E. AziziM. BenetosA. BorghiC. HitijJ.B. CifkovaR. CocaA. CornelissenV. CruickshankJ.K. CunhaP.G. DanserA.H.J. PinhoR.M. DellesC. DominiczakA.F. DorobantuM. DoumasM. Fernández-AlfonsoM.S. HalimiJ.M. JáraiZ. JelakovićB. JordanJ. KuznetsovaT. LaurentS. LovicD. LurbeE. MahfoudF. ManolisA. MiglinasM. NarkiewiczK. NiiranenT. PalatiniP. ParatiG. PathakA. PersuA. PoloniaJ. RedonJ. SarafidisP. SchmiederR. SpronckB. StabouliS. StergiouG. TaddeiS. ThomopoulosC. TomaszewskiM. Van de BorneP. WannerC. WeberT. WilliamsB. ZhangZ.Y. KjeldsenS.E. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension.J. Hypertens.202341121874207110.1097/HJH.000000000000348037345492
    [Google Scholar]
  66. KampmannU. MathiassenO.N. ChristensenK.L. BuusN.H. BjerreM. VaseH. MøllerN. KaltoftA. PoulsenP.L. Effects of renal denervation on insulin sensitivity and inflammatory markers in nondiabetic patients with treatment-resistant hypertension.J. Diabetes Res.201720171910.1155/2017/691531029082259
    [Google Scholar]
  67. EikelisN. HeringD. MarusicP. SariC. WaltonA. PhillipsS. LambertE. DuvalJ. KrumH. LambertG. EslerM. SchlaichM. The effect of renal denervation on endothelial function and inflammatory markers in patients with resistant hypertension.Int. J. Cardiol.2015188969810.1016/j.ijcard.2015.04.04125889337
    [Google Scholar]
  68. LangD. NahlerA. LambertT. GrundM. KammlerJ. KellermairJ. BlessbergerH. KyptaA. SteinwenderC. AuerJ. Anti-inflammatory effects and prediction of blood pressure response by baseline inflammatory state in catheter-based renal denervation.J. Clin. Hypertens. (Greenwich)201618111173117910.1111/jch.1284427246513
    [Google Scholar]
  69. Delgado SilvaJ. AlmeidaJ.S. Rodrigues-SantosP. Santos RosaM. GonçalvesL. Activated double-negative T cells (CD3+CD4−CD8−HLA-DR+) define response to renal denervation for resistant hypertension.Clin. Immunol.202021810852110.1016/j.clim.2020.10852132619647
    [Google Scholar]
  70. KantauskaiteM. VonendO. YakoubM. HeilmannP. MaifeldA. MinkoP. SchimmöllerL. AntochG. MüllerD.N. SchmidtC. DuvnjakB. ZierhutU. PotthoffS.A. RumpL.C. FischerJ.C. StegbauerJ. The effect of renal denervation on T cells in patients with resistant hypertension.Int. J. Mol. Sci.2023243249310.3390/ijms2403249336768814
    [Google Scholar]
  71. LeeD.W. KimJ.S. KimI.Y. KimH.S. KimJ-Y. RheeH. SeongE.Y. SongS.H. LeeS.B. EdelsteinC.L. KwakI.S. Catheter-based renal sympathetic denervation induces acute renal inflammation through activation of caspase-1 and NLRP3 inflammasome.Anatol. J. Cardiol.201921313414130821713
    [Google Scholar]
  72. GengJ. ChenC. ZhouX. QianW. ShanQ. Influence of renal sympathetic denervation in patients with early-stage heart failure versus late-stage heart failure.Int. Heart J.20185919910410.1536/ihj.16‑41329279521
    [Google Scholar]
  73. BurchellA.E. ChanK. RatcliffeL.E.K. HartE.C. SaxenaM. CollierD.J. JainA.K. MathurA. KnightC.J. CaulfieldM.J. PatonJ.F.R. NightingaleA.K. LoboM.D. BaumbachA. Controversies surrounding renal denervation: Lessons learned from real-world experience in two united kingdom centers.J. Clin. Hypertens. (Greenwich)201618658559210.1111/jch.1278926857092
    [Google Scholar]
  74. VogtA. DutzmannJ. NußbaumM. HoyerD. TongersJ. SchlittA. SeddingD. PlehnA. Safety and efficacy of renal sympathetic denervation: a 9-year long-term follow-up of 24-hour ambulatory blood pressure measurements.Front. Cardiovasc. Med.202310121080110.3389/fcvm.2023.121080137404730
    [Google Scholar]
  75. SimonettiF. PiccoloR. EspositoG. Renal denervation and long-term results.Eur. Heart J. Suppl.202325B85B8910.1093/eurheartjsupp/suad07337091664
    [Google Scholar]
  76. KarioK. YokoiY. OkamuraK. FujiharaM. OgoyamaY. YamamotoE. UrataH. ChoJ.M. KimC.J. ChoiS.H. ShinoharaK. MukaiY. IkemotoT. NakamuraM. SekiS. MatobaS. ShibataY. SugawaraS. YumotoK. TamuraK. YoshiharaF. NakamuraS. KangW.C. ShibasakiT. DoteK. YokoiH. MatsuoA. FujitaH. TakahashiT. KangH.J. SakataY. HorieK. InoueN. SasakiK. UenoT. TomitaH. MorinoY. NojimaY. KimC.J. MatsumotoT. KaiH. NantoS. Catheter-based ultrasound renal denervation in patients with resistant hypertension: The randomized, controlled REQUIRE trial.Hypertens. Res.202245222123110.1038/s41440‑021‑00754‑734654905
    [Google Scholar]
  77. MahfoudF. BöhmM. AziziM. PathakA. ZaleskiI.D. EwenS. TsioufisK. AnderssonB. BlankestijnP.J. BurnierM. ChatellierG. GafoorS. GrassiG. JonerM. KjeldsenS.E. LüscherT.F. LoboM.D. LotanC. ParatiG. RedonJ. RuilopeL. SudanoI. UkenaC. van LeeuwenE. VolpeM. WindeckerS. WitkowskiA. WijnsW. ZellerT. SchmiederR.E. Proceedings from the european clinical consensus conference for renal denervation: Considerations on future clinical trial design.Eur. Hear. J.20153622192227
    [Google Scholar]
  78. PanchavinninP. WanthongS. RoubsanthisukW. TresukosolD. BuranakitjaroenP. ChotruangnapaC. WatanapaW. PongakasiraR. WongpraparutN. Long-term outcome of renal nerve denervation (RDN) for resistant hypertension.Hypertens. Res.202245696296610.1038/s41440‑022‑00910‑735393514
    [Google Scholar]
  79. ZeijenV.J.M. FeyzL. Nannan PandayR. VeenK. VersmissenJ. KardysI. Van MieghemN.M. DaemenJ. Long-term follow-up of patients undergoing renal sympathetic denervation.Clin. Res. Cardiol.2022111111256126810.1007/s00392‑022‑02056‑535851428
    [Google Scholar]
  80. HuangX. LeeK. WangM.C. ShahN.S. KhanS.S. Age at diagnosis of hypertension by race and ethnicity in the US From 2011 to 2020.JAMA Cardiol.20227998698710.1001/jamacardio.2022.234535921097
    [Google Scholar]
  81. KurlS. JaeS.Y. VoutilainenA. MäkikallioT. LaukkanenJ.A. Joint effect of blood pressure and C-reactive protein and the risk of sudden cardiac death: A prospective cohort study.Int. J. Cardiol.202132618418810.1016/j.ijcard.2020.10.07133130259
    [Google Scholar]
  82. KurlS. JaeS.Y. VoutilainenA. LaukkanenJ.A. The combined effect of blood pressure and C-reactive protein with the risk of mortality from coronary heart and cardiovascular diseases.Nutr. Metab. Cardiovasc. Dis.20213172051205710.1016/j.numecd.2021.04.00434090772
    [Google Scholar]
  83. ZhangR. WangY. LiaoL. LiaoY. FangY. ShenY. The relationship between C-reactive protein/albumin ratio and mortality in hypertensive patients: A national cohort study.Nutr. Metab. Cardiovasc. Dis.20243471601160910.1016/j.numecd.2024.02.01138519295
    [Google Scholar]
  84. WangY. LiaoL. GuoQ. LiaoY. LinX. LiH. DengL. DengY. GuoD. ChenK. FangY. The systemic inflammatory response index is associated with chronic kidney disease in patients with hypertension: Data from the national health and nutrition examination study 1999–2018.Ren. Fail.2024462239645910.1080/0886022X.2024.239645939311633
    [Google Scholar]
  85. MurrayE.C. NosalskiR. MacRitchieN. TomaszewskiM. MaffiaP. HarrisonD.G. GuzikT.J. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective.Cardiovasc. Res.202111713cvab33010.1093/cvr/cvab33034698811
    [Google Scholar]
  86. WangT.J. GonaP. LarsonM.G. LevyD. BenjaminE.J. ToflerG.H. JacquesP.F. MeigsJ.B. RifaiN. SelhubJ. RobinsS.J. Newton-ChehC. VasanR.S. Multiple biomarkers and the risk of incident hypertension.Hypertension200749343243810.1161/01.HYP.0000256956.61872.aa17242302
    [Google Scholar]
  87. SessoH.D. JiménezM.C. WangL. RidkerP.M. BuringJ.E. GazianoJ.M. Plasma inflammatory markers and the risk of developing hypertension in men.J. Am. Heart Assoc.201549e00180210.1161/JAHA.115.00180226391130
    [Google Scholar]
  88. Kohli-LynchC.N. BoydK. BriggsA. DellesC. A framework for the cost-effectiveness analysis of novel biomarker testing in cardiovascular disease.Value Health2017209A404A40510.1016/j.jval.2017.08.040
    [Google Scholar]
  89. Public policy considerations of novel cardiovascular disease and stroke blood-based biomarkers.2024Available from:https://www.heart.org/en/-/media/Files/About-Us/Policy-Research/Policy-Positions/Heart-Stroke-Research/Novel-CVD-Stroke-Biomarkers.pdf?sc_lang=en (accessed on 14-3-2024).
  90. ZhangC. HanB. XuT. LiD. The biological function and potential mechanism of long non-coding RNAs in cardiovascular disease.J. Cell. Mol. Med.20202422129001290910.1111/jcmm.1596833052009
    [Google Scholar]
  91. CorreiaC.C.M. RodriguesL.F. de Avila PelozinB.R. OliveiraE.M. FernandesT. Long non-coding RNAs in cardiovascular diseases: Potential function as biomarkers and therapeutic targets of exercise training.Noncoding RNA2021746510.3390/ncrna704006534698215
    [Google Scholar]
  92. PollerW. DimmelerS. HeymansS. ZellerT. HaasJ. KarakasM. LeistnerD.M. JakobP. NakagawaS. BlankenbergS. EngelhardtS. ThumT. WeberC. MederB. HajjarR. LandmesserU. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives.Eur. Heart J.201839292704271610.1093/eurheartj/ehx16528430919
    [Google Scholar]
  93. LuP. DingF. XiangY.K. HaoL. ZhaoM. Noncoding RNAs in cardiac hypertrophy and heart failure.Cells202211577710.3390/cells1105077735269399
    [Google Scholar]
  94. Improving treatment efficacy in hypertension by biomarker-guided personalised decision support.2023Available from:https://cordis.europa.eu/project/id/101095407 (accessed on 14-3-2024).
  95. BautistaL.E. VeraL.M. ArenasI.A. GamarraG. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension.J. Hum. Hypertens.200519214915410.1038/sj.jhh.100178515361891
    [Google Scholar]
  96. PaulettoP. RattazziM. Inflammation and hypertension: the search for a link.Nephrol. Dial. Transplant.200621485085310.1093/ndt/gfl01916464884
    [Google Scholar]
  97. MengX. SunH. TuX. LiW. The Predictive Role of Hematological Parameters in Hypertension.Angiology202475870571610.1177/0003319723119042337459606
    [Google Scholar]
  98. HuangJ.B. ChenY.S. JiH.Y. XieW.M. JiangJ. RanL.S. ZhangC.T. QuanX.Q. Neutrophil to high-density lipoprotein ratio has a superior prognostic value in elderly patients with acute myocardial infarction: a comparison study.Lipids Health Dis.20201915910.1186/s12944‑020‑01238‑232247314
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348789250604113545
Loading
/content/journals/cmc/10.2174/0109298673348789250604113545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test