Skip to content
2000
Volume 32, Issue 30
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), and hepatitis B and C are the main pathogenic factors of hepatocellular carcinoma (HCC). Though the current understanding of risk factors for HCC has been improved, patients with this type of cancer are normally diagnosed at advanced stages, posing significant challenges to effective treatment.

Methods

This study analyzed the HCC datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database (GSE14520 and GSE116174). Stromal and immune cell infiltration in the tumor microenvironment (TME) was quantified by the ESTIMATE algorithm. To identify gene modules associated with cancer-associated fibroblasts (CAFs), weighted gene co-expression network analysis (WGCNA) was performed to develop gene co-expression networks. A CAF prognosis score (CAFPS) model was established based on the prognostic CAF genes screened by univariate and multivariate Cox regression analyses. To determine the role of the genes in the vital module in HCC, we conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Finally, the relationship between CAFPS and drug sensitivity was analyzed using Genomic Data for Cancer Drug Sensitivity (GDSC).

Results

In this study, we found significant differences in immune scores, stromal scores, CAFs scores, and CD4/8 T-cell scores between normal samples and samples with different TNM staging. In particular, the proportion of CAFs was higher than all other cells in normal samples. Gene modules related to CAFs were identified by developing a gene co-expression network using WGCNA analysis. The lightyellow and greenyellow modules showed the highest correlation with CAF scores. Univariate COX analysis identified 12 genes related to HCC prognosis from a total of 191 genes in the two modules. The Kaplan-Meier (KM) survival analysis revealed that a high expression of these genes was associated with a lower survival chance. Based on the 12 genes obtained by univariate COX analysis, multivariate COX analysis was performed to construct a risk score model for the characteristics of CAFs (CAFPS). The KM survival curves of patients in the high CAFPS and low CAFPS groups showed that patients in the low CAFPS group had better survival.

Conclusion

CAFs played a crucial role in the pathogenesis and treatment response of HCC. Targeting the CAFs milieu may provide therapeutic benefits, highlighting the importance of CAFS in developing a personalized treatment for HCC patients. Further studies are required to verify the current findings and explore their implications in clinical settings.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322216240711113419
2024-07-15
2025-09-29
Loading full text...

Full text loading...

References

  1. GanesanP. KulikL.M. Hepatocellular carcinoma.Clin. Liver Dis.20232718510210.1016/j.cld.2022.08.00436400469
    [Google Scholar]
  2. WenN. CaiY. LiF. YeH. TangW. SongP. ChengN. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update.Biosci. Trends2022161203010.5582/bst.2022.0106135197399
    [Google Scholar]
  3. TanA.T. BertolettiA. HBV-HCC treatment with mRNA electroporated HBV-TCR T cells.Immunother Adv202221ltab02610.1093/immadv/ltab02635919490
    [Google Scholar]
  4. DonisiC. PuzzoniM. ZiranuP. LaiE. MarianiS. SabaG. ImperaV. DuboisM. PersanoM. MigliariM. PrettaA. LisciaN. AstaraG. ScartozziM. Immune checkpoint inhibitors in the treatment of HCC.Front. Oncol.20211060124010.3389/fonc.2020.60124033585218
    [Google Scholar]
  5. RazaA. SoodG.K. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine.World J. Gastroenterol.201420154115412710.3748/wjg.v20.i15.411524764650
    [Google Scholar]
  6. KurdiM. Glioblastoma with PRMT5 gene upregulation is a key target for tumor cell regression.Oncologie202426223924610.1515/oncologie‑2023‑0534
    [Google Scholar]
  7. BrownZ.J. TsilimigrasD.I. RuffS.M. MohseniA. KamelI.R. CloydJ.M. PawlikT.M. Management of hepatocellular carcinoma.JAMA Surg.2023158441042010.1001/jamasurg.2022.798936790767
    [Google Scholar]
  8. ZhuX. WangY. ChangS. SuY. HeC. HuS. ZhuM. DingY. RenN. WangQ. XieJ. ZhouH. Epigenetics of sirtuins: Relevance to hepatocellular carcinoma.Oncologie202123456958810.32604/oncologie.2021.018869
    [Google Scholar]
  9. LiuY. XunZ. MaK. LiangS. LiX. ZhouS. SunL. LiuY. DuY. GuoX. CuiT. ZhouH. WangJ. YinD. SongR. ZhangS. CaiW. MengF. GuoH. ZhangB. YangD. BaoR. HuQ. WangJ. YeY. LiuL. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy.J. Hepatol.202378477078210.1016/j.jhep.2023.01.01136708811
    [Google Scholar]
  10. ChenC. WangZ. DingY. QinY. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma.Front. Immunol.202314113330810.3389/fimmu.2023.113330836845131
    [Google Scholar]
  11. BouattourM. RaymondE. FaivreS. Hepatocellular carcinoma: New concepts, new drugs and new approaches.Oncologie2017195-616817610.1007/s10269‑017‑2712‑2
    [Google Scholar]
  12. YinZ. DongC. JiangK. XuZ. LiR. GuoK. ShaoS. WangL. Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma.J. Hematol. Oncol.201912110110.1186/s13045‑019‑0782‑x31547836
    [Google Scholar]
  13. YingF. ChanM.S.M. LeeT.K.W. Cancer-associated fibroblasts in hepatocellular carcinoma and cholangiocarcinoma.Cell. Mol. Gastroenterol. Hepatol.202315498599910.1016/j.jcmgh.2023.01.00636708970
    [Google Scholar]
  14. PengH. ZhuE. ZhangY. Advances of cancer-associated fibroblasts in liver cancer.Biomark. Res.20221015910.1186/s40364‑022‑00406‑z35971182
    [Google Scholar]
  15. GiguelayA. TurtoiE. KhelafL. TosatoG. DadiI. ChastelT. PoulM.A. PratlongM. NicolescuS. SeveracD. AdenisA. Sgarbura-PopescuO. CarrèreS. RouanetP. QuenetF. YchouM. PourqierD. ColomboP.E. TurtoiA. ColingeJ. The landscape of cancer-associated fibroblasts in colorectal cancer liver metastases.Theranostics202212177624763910.7150/thno.7285336438498
    [Google Scholar]
  16. KapsL. SchuppanD. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers.Cells202099202710.3390/cells909202732899119
    [Google Scholar]
  17. AffoS. YuL.X. SchwabeR.F. The role of cancer-associated fibroblasts and fibrosis in liver cancer.Annu. Rev. Pathol.201712115318610.1146/annurev‑pathol‑052016‑10032227959632
    [Google Scholar]
  18. LiuJ. LiP. WangL. LiM. GeZ. NoordamL. LieshoutR. VerstegenM.M.A. MaB. SuJ. YangQ. ZhangR. ZhouG. CarrascosaL.C. SprengersD. IJzermansJ.N.M. SmitsR. KwekkeboomJ. van der LaanL.J.W. PeppelenboschM.P. PanQ. CaoW. Cancer-associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance.Cell. Mol. Gastroenterol. Hepatol.202111240743110.1016/j.jcmgh.2020.09.00332932015
    [Google Scholar]
  19. AkkızH. Emerging role of cancer-associated fibroblasts in progression and treatment of hepatocellular carcinoma.Int. J. Mol. Sci.2023244394110.3390/ijms2404394136835352
    [Google Scholar]
  20. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  21. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  22. YuG. WangL.G. HanY. HeQ.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  23. ZulibiyaA. WenJ. YuH. ChenX. XuL. MaX. ZhangB. Single-cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.202318661162510.32604/chd.2023.047689
    [Google Scholar]
  24. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  25. KobayashiH. EnomotoA. WoodsS.L. BurtA.D. TakahashiM. WorthleyD.L. Cancer-associated fibroblasts in gastrointestinal cancer.Nat. Rev. Gastroenterol. Hepatol.201916528229510.1038/s41575‑019‑0115‑030778141
    [Google Scholar]
  26. QinX. GuoH. WangX. ZhuX. YanM. WangX. XuQ. ShiJ. LuE. ChenW. ZhangJ. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5.Genome Biol.20192011210.1186/s13059‑018‑1604‑030642385
    [Google Scholar]
  27. ChengY. LiH. DengY. TaiY. ZengK. ZhangY. LiuW. ZhangQ. YangY. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma.Cell Death Dis.20189442210.1038/s41419‑018‑0458‑429556041
    [Google Scholar]
  28. SongM. HeJ. PanQ.Z. YangJ. ZhaoJ. ZhangY.J. HuangY. TangY. WangQ. HeJ. GuJ. LiY. ChenS. ZengJ. ZhouZ.Q. YangC. HanY. ChenH. XiangT. WengD.S. XiaJ.C. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression.Hepatology20217351717173510.1002/hep.3179233682185
    [Google Scholar]
  29. YugawaK. YoshizumiT. ManoY. ItohS. HaradaN. IkegamiT. KohashiK. OdaY. MoriM. Cancer-associated fibroblasts promote hepatocellular carcinoma progression through downregulation of exosomal miR-150-3p.Eur. J. Surg. Oncol.202147238439310.1016/j.ejso.2020.08.00232883551
    [Google Scholar]
  30. ChenS. MorineY. TokudaK. YamadaS. SaitoY. NishiM. IkemotoT. ShimadaM. Cancer-associated fibroblast-induced M2-polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitor-1 pathway.Int. J. Oncol.20215925910.3892/ijo.2021.523934195849
    [Google Scholar]
  31. FengB. WuJ. ShenB. JiangF. FengJ. Cancer-associated fibroblasts and resistance to anticancer therapies: Status, mechanisms, and countermeasures.Cancer Cell Int.202222116610.1186/s12935‑022‑02599‑735488263
    [Google Scholar]
  32. MaoX. XuJ. WangW. LiangC. HuaJ. LiuJ. ZhangB. MengQ. YuX. ShiS. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives.Mol. Cancer202120113110.1186/s12943‑021‑01428‑134635121
    [Google Scholar]
  33. PeiL. LiuY. LiuL. GaoS. GaoX. FengY. SunZ. ZhangY. WangC. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers.Mol. Cancer20232212910.1186/s12943‑023‑01731‑z36759842
    [Google Scholar]
  34. KimD.K. JeongJ. LeeD.S. HyeonD.Y. ParkG.W. JeonS. LeeK.B. JangJ.Y. HwangD. KimH.M. JungK. PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer.Nat. Commun.2022131629210.1038/s41467‑022‑33991‑636272973
    [Google Scholar]
  35. TangZ. ShenQ. XieH. ZhouX. LiJ. FengJ. LiuH. WangW. ZhangS. NiS. Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer (NSCLC).Oncotarget2016729462534626210.18632/oncotarget.1008627323829
    [Google Scholar]
  36. RibeiroN. SousaS.R. BrekkenR.A. MonteiroF.J. Role of SPARC in bone remodeling and cancer-related bone metastasis.J. Cell. Biochem.20141151172610.1002/jcb.2464924038053
    [Google Scholar]
  37. WuZ. GeL. MaL. LuM. SongY. DengS. DuanP. DuT. WuY. ZhangZ. ZhangS. TPM2 attenuates progression of prostate cancer by blocking PDLIM7-mediated nuclear translocation of YAP1.Cell Biosci.20231313910.1186/s13578‑023‑00993‑w36823643
    [Google Scholar]
  38. LingW. JohnsonS.K. MehdiS.J. AlapatD.V. BauerM. ZangariM. SchinkeC. ThanendrarajanS. van RheeF. YaccobyS. EDNRA-expressing mesenchymal cells are expanded in myeloma interstitial bone marrow and associated with disease progression.Cancers (Basel)20231518451910.3390/cancers1518451937760488
    [Google Scholar]
  39. DouD. RenX. HanM. XuX. GeX. GuY. WangX. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway.Front. Immunol.202011202610.3389/fimmu.2020.0202633162971
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322216240711113419
Loading
/content/journals/cmc/10.2174/0109298673322216240711113419
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test