Skip to content
2000
Volume 32, Issue 30
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Tripartite-motif protein family member 65 (TRIM65) belongs to the tripartite motif (TRIM) protein family. Its typical structure consists of the RING, B-Box motif, and coiled-coil domains, which are highly conserved at the N-terminus and the variable SPRY domain at the C-terminus. TRIM65 is an E3 ubiquitin ligase that participates in physiological and pathological processes through the ubiquitination pathway, including intracellular signal transduction, protein degradation, cell proliferation, apoptosis, carcinogenesis, autophagy, and phenotypic transformation. Evidence shows that TRIM65 plays a remarkable and obscure role in diseases, including multisystem tumours, neurodegenerative diseases, immune system diseases, and inflammatory diseases. This review is devoted to elaborating on the relationship between TRIM65 and diseases and its pathogenic mechanism, providing a theoretical basis for TRIM65 as a possible pathogenic target of diseases and exploring the possible future research direction of TRIM65 and the challenges it may face.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673304966240614091547
2024-06-27
2025-09-29
Loading full text...

Full text loading...

References

  1. DangF. NieL. WeiW. Ubiquitin signaling in cell cycle control and tumorigenesis.Cell Death Differ.202128242743810.1038/s41418‑020‑00648‑033130827
    [Google Scholar]
  2. KumarV.S. VellaichamyA. Sequence and structure-based characterization of ubiquitination sites in human and yeast proteins using Chou’s sample formulation.Proteins201987864665710.1002/prot.2568930958587
    [Google Scholar]
  3. GhoshS. MayM.J. KoppE.B. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses.Annu. Rev. Immunol.199816122526010.1146/annurev.immunol.16.1.2259597130
    [Google Scholar]
  4. KoeppD.M. HarperJ.W. ElledgeS.J. How the cyclin became a cyclin: Regulated proteolysis in the cell cycle.Cell199997443143410.1016/S0092‑8674(00)80753‑910338207
    [Google Scholar]
  5. RockK.L. GoldbergA.L. Degradation of cell proteins and the generation of MHC class I-presented peptides.Annu. Rev. Immunol.199917173977910.1146/annurev.immunol.17.1.73910358773
    [Google Scholar]
  6. ZhangG.W. CaiH.C. ShangX.J. Ubiquitin-proteasome system and sperm DNA repair: An update.Zhonghua Nan Ke Xue201622983483729071883
    [Google Scholar]
  7. MalleryD.L. McEwanW.A. BidgoodS.R. TowersG.J. JohnsonC.M. JamesL.C. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21).Proc. Natl. Acad. Sci.201010746199851999010.1073/pnas.101407410721045130
    [Google Scholar]
  8. VlachostergiosP.J. PatrikidouA. DalianiD.D. PapandreouC.N. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: Transcriptional regulation.J. Cell. Mol. Med.2009139b3019303110.1111/j.1582‑4934.2009.00825.x19522844
    [Google Scholar]
  9. XiongY. YuC. ZhangQ. Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis.Cells2022116105810.3390/cells1106105835326509
    [Google Scholar]
  10. ZhangY. Transcriptional regulation by histone ubiquitination and deubiquitination.Genes Dev.200317222733274010.1101/gad.115640314630937
    [Google Scholar]
  11. ÇetinG. KlafackS. Studencka-TurskiM. KrügerE. EbsteinF. The ubiquitin-proteasome system in immune cells.Biomolecules20211116010.3390/biom1101006033466553
    [Google Scholar]
  12. LvZ. YuanL. AtkisonJ.H. Aldana-MasangkayG. ChenY. OlsenS.K. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.J. Biol. Chem.201729229120891209910.1074/jbc.M117.78762228572513
    [Google Scholar]
  13. MiddletonA.J. WrightJ.D. DayC.L. Regulation of E2s: A role for additional ubiquitin binding sites?J. Mol. Biol.2017429223430344010.1016/j.jmb.2017.06.00828625848
    [Google Scholar]
  14. Toma-FukaiS. ShimizuT. Structural Diversity of Ubiquitin E3 Ligase.Molecules20212621668210.3390/molecules2621668234771091
    [Google Scholar]
  15. CiechanoverA. The ubiquitin-proteasome proteolytic pathway.Cell1994791132110.1016/0092‑8674(94)90396‑47923371
    [Google Scholar]
  16. BoutillierA.L. Kienlen-CampardP. LoefflerJ.P. Depolarization regulates cyclin D1 degradation and neuronal apoptosis: A hypothesis about the role of the ubiquitin/proteasome signalling pathway.Eur. J. Neurosci.199911244144810.1046/j.1460‑9568.1999.00451.x10051745
    [Google Scholar]
  17. OrlowskiR.Z. The role of the ubiquitin-proteasome pathway in apoptosis.Cell Death Differ.19996430331310.1038/sj.cdd.440050510381632
    [Google Scholar]
  18. RahimiN. The ubiquitin-proteasome system meets angiogenesis.Mol. Cancer Ther.201211353854810.1158/1535‑7163.MCT‑11‑055522357635
    [Google Scholar]
  19. SeoJ. KimM.W. BaeK.H. LeeS.C. SongJ. LeeE.W. The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics.Biochem. Pharmacol.2019162214010.1016/j.bcp.2018.11.01230452908
    [Google Scholar]
  20. Ben-NeriahY. Regulatory functions of ubiquitination in the immune system.Nat. Immunol.200231202610.1038/ni0102‑2011753406
    [Google Scholar]
  21. McKinnonC. TabriziS.J. The ubiquitin-proteasome system in neurodegeneration.Antioxid. Redox Signal.201421172302232110.1089/ars.2013.580224437518
    [Google Scholar]
  22. PredmoreJ.M. WangP. DavisF. BartoloneS. WestfallM.V. DykeD.B. PaganiF. PowellS.R. DayS.M. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies.Circulation20101218997100410.1161/CIRCULATIONAHA.109.90455720159828
    [Google Scholar]
  23. YangW. WangS. TongS. ZhangW.D. QinJ.J. Expanding the ubiquitin code in pancreatic cancer.Biochim. Biophys. Acta Mol. Basis Dis.20241870116688410.1016/j.bbadis.2023.16688437704111
    [Google Scholar]
  24. RojasV.K. ParkI.W. Role of the ubiquitin proteasome system (UPS) in the HIV-1 life cycle.Int. J. Mol. Sci.20192012298410.3390/ijms2012298431248071
    [Google Scholar]
  25. LiX. ElmiraE. RohondiaS. WangJ. LiuJ. DouQ.P. Patent review of the ubiquitin ligase system: 2015-2018.Expert Opin. Ther. Pat.20182812919937
    [Google Scholar]
  26. BenaroudjN. ZwicklP. SeemüllerE. BaumeisterW. GoldbergA.L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation.Mol. Cell2003111697810.1016/S1097‑2765(02)00775‑X12535522
    [Google Scholar]
  27. CelebiG. KesimH. OzerE. KutluO. The effect of dysfunctional ubiquitin enzymes in the pathogenesis of most common diseases.Int. J. Mol. Sci.20202117633510.3390/ijms2117633532882786
    [Google Scholar]
  28. KissL. RhinesmithT. LuptakJ. DicksonC.F. WeidenhausenJ. SmylyS. YangJ.C. MaslenS.L. SinningI. NeuhausD. CliftD. JamesL.C. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates.Nat. Commun.2023141216010.1038/s41467‑023‑37504‑x37061529
    [Google Scholar]
  29. ChaikuadA. ZhubiR. TredupC. KnappS. Comparative structural analyses of the NHL domains from the human E3 ligase TRIM–NHL family.IUCrJ20229672072710.1107/S205225252200858236381143
    [Google Scholar]
  30. ShortK.M. CoxT.C. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding.J. Biol. Chem.2006281138970898010.1074/jbc.M51275520016434393
    [Google Scholar]
  31. LiY. WuH. WuW. ZhuoW. LiuW. ZhangY. ChengM. ChenY.G. GaoN. YuH. WangL. LiW. YangM. Structural insights into the TRIM family of ubiquitin E3 ligases.Cell Res.201424676276510.1038/cr.2014.4624722452
    [Google Scholar]
  32. SardielloM. CairoS. FontanellaB. BallabioA. MeroniG. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties.BMC Evol. Biol.20088122510.1186/1471‑2148‑8‑22518673550
    [Google Scholar]
  33. EspositoD. KoliopoulosM.G. RittingerK. Structural determinants of TRIM protein function.Biochem. Soc. Trans.201745118319110.1042/BST2016032528202672
    [Google Scholar]
  34. LiS. WangL. FuB. BermanM.A. DialloA. DorfM.E. TRIM65 regulates microRNA activity by ubiquitination of TNRC6.Proc. Natl. Acad. Sci. USA2014111196970697510.1073/pnas.132254511124778252
    [Google Scholar]
  35. MaX.F. ZhouY.R. ZhouZ.X. LiuH.T. ZhouB-B. DengN.H. ZhouK. TianZ. WuZ.F. LiuX.Y. FuM.G. JiangZ.S. TRIM65 Suppresses oxLDL-induced endothelial inflammation by interaction with VCAM-1 in atherogenesis.Curr. Med. Chem.202431304898491110.2174/092986733166623082215235037608612
    [Google Scholar]
  36. YeP. ChiX. ChaJ.H. LuoS. YangG. YanX. YangW.H. Potential of E3 ubiquitin ligases in cancer immunity: Opportunities and challenges.Cells20211012330910.3390/cells1012330934943817
    [Google Scholar]
  37. WangX.L. ShiW.P. ShiH.C. LuS.C. WangK. SunC. HeJ.S. JinW.G. LvX.X. ZouH. ShuY.S. Knockdown of TRIM65 inhibits lung cancer cell proliferation, migration and invasion: A therapeutic target in human lung cancer.Oncotarget2016749815278154010.18632/oncotarget.1313127829229
    [Google Scholar]
  38. WangX.Y. MaoH.W. GuanX.H. HuangQ.M. YuZ.P. WuJ. TanH.L. ZhangF. HuangX. DengK.Y. XinH.B. TRIM65 promotes cervical cancer through selectively degrading p53-mediated inhibition of autophagy and apoptosis.Front. Oncol.20221285393510.3389/fonc.2022.85393535402260
    [Google Scholar]
  39. WeiW.S. ChenX. GuoL.Y. LiX.D. DengM.H. YuanG.J. HeL.Y. LiY.H. ZhangZ.L. JiangL.J. ChenR.X. MaX.D. WeiS. MaN.F. LiuZ.W. LuoJ.H. ZhouF.J. XieD. TRIM65 supports bladder urothelial carcinoma cell aggressiveness by promoting ANXA2 ubiquitination and degradation.Cancer Lett.2018435102210.1016/j.canlet.2018.07.03630075204
    [Google Scholar]
  40. NowakowskiT.J. FotakiV. PollockA. SunT. PrattT. PriceD.J. MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain.Proc. Natl. Acad. Sci.2013110177056706110.1073/pnas.121938511023569256
    [Google Scholar]
  41. VienbergS. GeigerJ. MadsenS. DalgaardL.T. Micro RNAs in metabolism.Acta Physiol.2017219234636110.1111/apha.1268127009502
    [Google Scholar]
  42. MendellJ.T. OlsonE.N. MicroRNAs in stress signaling and human disease.Cell201214861172118710.1016/j.cell.2012.02.00522424228
    [Google Scholar]
  43. SchütteJ.P. MankeM.C. HemmenK. MünzerP. SchörgB.F. RamosG.C. PogodaM. DicentaV. HoffmannS.H.L. PinneckerJ. KollotzekF. ZdanyteM. MuellerK.A.L. SinghY. MackA.F. PichlerB. LangF. NieswandtB. GawazM. HeinzeK.G. CasadeiN. BorstO. Platelet-derived MicroRNAs regulate cardiac remodeling after myocardial ischemia.Circ. Res.20231327e96e11310.1161/CIRCRESAHA.122.32245936891903
    [Google Scholar]
  44. PanX. ChenY. ShenY. TantaiJ. Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7.Cell Death Dis.201910642910.1038/s41419‑019‑1660‑831160576
    [Google Scholar]
  45. LiS. WangL. FuB. DorfM.E. Trim65: A cofactor for regulation of the microRNA pathway.RNA Biol.20141191113112110.4161/rna.3617925483047
    [Google Scholar]
  46. HuG. LiuN. WangH. WangY. GuoZ. LncRNA LINC01857 promotes growth, migration, and invasion of glioma by modulating miR-1281/TRIM65 axis.J. Cell. Physiol.201923412220092201610.1002/jcp.2876331049960
    [Google Scholar]
  47. LvH. ZhouD. LiuG. LncRNA LINC00963 promotes colorectal cancer cell proliferation and metastasis by regulating miR-1281 and TRIM65.Mol. Med. Rep.202124578110.3892/mmr.2021.1242134498706
    [Google Scholar]
  48. GuoC. WangH. JiangH. QiaoL. WangX. Circ_0011292 enhances paclitaxel resistance in non-small cell lung cancer by regulating miR-379-5p/TRIM65 axis.Cancer Biother. Radiopharm.2022372849510.1089/cbr.2019.354632833503
    [Google Scholar]
  49. WangY. ZhangQ. Long noncoding RNA MALAT1 knockdown inhibits proliferation, migration, and invasion and promotes apoptosis in non-small-cell lung cancer cells through regulating miR-515-3p / TRIM65 axis.Cancer Biother. Radiopharm.2020cbr.2020.373010.1089/cbr.2020.373033395541
    [Google Scholar]
  50. ChenD. LiY. ZhangX. WuH. WangQ. CaiJ. CuiY. LiuH. LanP. WangJ. YangZ. WangL. Ubiquitin ligase TRIM65 promotes colorectal cancer metastasis by targeting ARHGAP35 for protein degradation.Oncogene201938376429644410.1038/s41388‑019‑0891‑631332286
    [Google Scholar]
  51. LiuC. SunW. YangK. XiaB. Knockdown of TRIM65 suppressed the proliferation and invasiveness of gastric cancer cells by restricting the ubiquitin degradation of PPM1A.Exp. Cell Res.2022416211315410.1016/j.yexcr.2022.11315435421368
    [Google Scholar]
  52. YangY.F. ZhangM.F. TianQ.H. ZhangC.Z. TRIM65 triggers β-catenin signaling via ubiquitylation of Axin1 to promote hepatocellular carcinoma.J. Cell Sci.2017130183108311528754688
    [Google Scholar]
  53. LiY. MaC. ZhouT. LiuY. SunL. YuZ. TRIM65 negatively regulates p53 through ubiquitination.Biochem. Biophys. Res. Commun.2016473127828210.1016/j.bbrc.2016.03.09327012201
    [Google Scholar]
  54. ChenG. ZhouT. LiuY. YuZ. Combinatory inhibition of TRIM65 and MDM2 in lung cancer cells.Biochem. Biophys. Res. Commun.2018506369870210.1016/j.bbrc.2018.10.13030454706
    [Google Scholar]
  55. WangJ. LiangX. YuT. XuY.L. XuL.H. ZhangX.J. MaJ. WangY.R. HeS.L. TRIM65 is a potential oncogenic protein via ERK1/2 on Jurkat and Raji cells: A therapeutic target in human lymphoma malignancies.Cell Biol. Int.201842111503151010.1002/cbin.1103530039885
    [Google Scholar]
  56. YaoH. XieW. DaiY. LiuY. GuW. LiJ. WuL. XieJ. RuiW. RenB. XueL. ChengY. LinS. LiC. TangH. WangY. LouM. ZhangX. HuR. ShangH. HuangJ. WuZ.B. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT.Neuro-oncol.20222481286129710.1093/neuonc/noac05335218667
    [Google Scholar]
  57. LuY. XiaoY. YangJ. SuH. ZhangX. SuF. TianB. ZhaoD. LingX. ZhangT. TRIM65 promotes malignant cell behaviors in triple-negative breast cancer by impairing the stability of LATS1 protein.Oxid. Med. Cell. Longev.2022202211610.1155/2022/437497836035221
    [Google Scholar]
  58. WangZ. LiuW. ChenC. YangX. LuoY. ZhangB. Low mutation and neoantigen burden and fewer effector tumor infiltrating lymphocytes correlate with breast cancer metastasization to lymph nodes.Sci. Rep.20199125310.1038/s41598‑018‑36319‑x30670769
    [Google Scholar]
  59. LinQ. HuangW.Q. TzengC.M. Genetic associations of leukoaraiosis indicate pathophysiological mechanisms in white matter lesions etiology.Rev. Neurosci.201526334335810.1515/revneuro‑2014‑008225781674
    [Google Scholar]
  60. LamS. LiptonR.B. HarveyD.J. ZammitA.R. EzzatiA. White matter hyperintensities and cognition across different Alzheimer’s biomarker profiles.J. Am. Geriatr. Soc.20216971906191510.1111/jgs.1717333891712
    [Google Scholar]
  61. FornageM. DebetteS. BisJ.C. SchmidtH. IkramM.A. DufouilC. SigurdssonS. LumleyT. DeStefanoA.L. FazekasF. VroomanH.A. ShibataD.K. MaillardP. ZijdenbosA. SmithA.V. GudnasonH. de BoerR. CushmanM. MazoyerB. HeissG. VernooijM.W. EnzingerC. GlazerN.L. BeiserA. KnopmanD.S. CavalieriM. NiessenW.J. HarrisT.B. PetrovicK. LopezO.L. AuR. LambertJ.C. HofmanA. GottesmanR.F. GarciaM. HeckbertS.R. AtwoodL.D. CatellierD.J. UitterlindenA.G. YangQ. SmithN.L. AspelundT. RomeroJ.R. RiceK. TaylorK.D. NallsM.A. RotterJ.I. SharrettR. van DuijnC.M. AmouyelP. WolfP.A. GudnasonV. van der LugtA. BoerwinkleE. PsatyB.M. SeshadriS. TzourioC. BretelerM.M.B. MosleyT.H. SchmidtR. LongstrethW.T. DeCarliC. LaunerL.J. Genome-wide association studies of cerebral white matter lesion burden.Ann. Neurol.201169692893910.1002/ana.2240321681796
    [Google Scholar]
  62. FreudenbergerP. SchmidtR. SchmidtH. Genetics of age-related white matter lesions from linkage to genome wide association studies.J. Neurol. Sci.20123221-2828610.1016/j.jns.2012.06.01622795385
    [Google Scholar]
  63. SchmidtH. FreudenbergerP. SeilerS. SchmidtR. Genetics of subcortical vascular dementia.Exp. Gerontol.2012471187387710.1016/j.exger.2012.06.00322735669
    [Google Scholar]
  64. VerhaarenB.F.J. de BoerR. VernooijM.W. RivadeneiraF. UitterlindenA.G. HofmanA. KrestinG.P. van der LugtA. NiessenW.J. BretelerM.M.B. IkramM.A. Replication study of chr17q25 with cerebral white matter lesion volume.Stroke201142113297329910.1161/STROKEAHA.111.62309021868733
    [Google Scholar]
  65. LiJ. AbediV. ZandR. GriessenauerC.J. Replication of Top Loci From COL4A1/2 associated with white matter hyperintensity burden in patients with ischemic stroke.Stroke202051123751375510.1161/STROKEAHA.120.03026033148145
    [Google Scholar]
  66. LopezL.M. HillW.D. HarrisS.E. Valdes HernandezM. Munoz ManiegaS. BastinM.E. BaileyE. SmithC. McBrideM. McClureJ. GrahamD. DominiczakA. YangQ. FornageM. IkramM.A. DebetteS. LaunerL. BisJ.C. SchmidtR. SeshadriS. PorteousD.J. StarrJ. DearyI.J. WardlawJ.M. Genes from a translational analysis support a multifactorial nature of white matter hyperintensities.Stroke201546234134710.1161/STROKEAHA.114.00764925586835
    [Google Scholar]
  67. HuangW.Q. YeH.M. CaiL.L. MaQ.L. LuC.X. TongS.J. TzengC.M. LinQ. The Associations of PMF1, ICAM1, AGT, TRIM65, FBF1, and ACOX1 variants with leukoaraiosis in chinese population.Front. Genet.20191061510.3389/fgene.2019.0061531396257
    [Google Scholar]
  68. HuangW.Q. YeH.M. LiF.F. YiK.H. ZhangY. CaiL.L. LinH.N. LinQ. TzengC.M. Analysis of genetic polymorphisms associated with leukoaraiosis in the southern Chinese population.Medicine20169535e385710.1097/MD.000000000000385727583843
    [Google Scholar]
  69. JianX. SatizabalC.L. SmithA.V. WittfeldK. BisJ.C. SmithJ.A. HsuF.C. NhoK. HoferE. HagenaarsS.P. NyquistP.A. MishraA. AdamsH.H.H. LiS. TeumerA. ZhaoW. FreedmanB.I. SabaY. YanekL.R. ChauhanG. van BuchemM.A. CushmanM. RoyleN.A. BryanR.N. NiessenW.J. WindhamB.G. DeStefanoA.L. HabesM. HeckbertS.R. PalmerN.D. LewisC.E. EiriksdottirG. MaillardP. MathiasR.A. HomuthG. Valdés-HernándezM.C. DiversJ. BeiserA.S. LangnerS. RiceK.M. BastinM.E. YangQ. MaldjianJ.A. StarrJ.M. SidneyS. RisacherS.L. UitterlindenA.G. GudnasonV.G. NauckM. RotterJ.I. SchreinerP.J. BoerwinkleE. van DuijnC.M. MazoyerB. von SarnowskiB. GottesmanR.F. LevyD. SigurdssonS. VernooijM.W. TurnerS.T. SchmidtR. WardlawJ.M. PsatyB.M. MosleyT.H. DeCarliC.S. SaykinA.J. BowdenD.W. BeckerD.M. DearyI.J. SchmidtH. KardiaS.L.R. IkramM.A. DebetteS. GrabeH.J. LongstrethW.T.Jr SeshadriS. LaunerL.J. FornageM. Exome chip analysis identifies low-frequency and rare variants in MRPL38 for white matter hyperintensities on brain magnetic resonance imaging.Stroke20184981812181910.1161/STROKEAHA.118.02068930002152
    [Google Scholar]
  70. TabaraY. IgaseM. OkadaY. NagaiT. UetaniE. KidoT. OchiN. TakitaR. YamamotoM. KoharaK. MikiT. Association of C hr17q25 with cerebral white matter hyperintensities and cognitive impairment: The J- SHIPP study.Eur. J. Neurol.201320586086210.1111/j.1468‑1331.2012.03879.x23020117
    [Google Scholar]
  71. YangD. LiN.L. WeiD. LiuB. GuoF. ElbaheshH. ZhangY. ZhouZ. ChenG.Y. LiK. The E3 ligase TRIM56 is a host restriction factor of Zika virus and depends on its RNA-binding activity but not miRNA regulation, for antiviral function.PLoS Negl. Trop. Dis.2019136e000753710.1371/journal.pntd.000753731251739
    [Google Scholar]
  72. FullF. van GentM. SparrerK.M.J. ChiangC. ZurenskiM.A. SchererM. BrockmeyerN.H. HeinzerlingL. StürzlM. KornK. StammingerT. EnsserA. GackM.U. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity.Nat. Microbiol.20184116417610.1038/s41564‑018‑0285‑530420784
    [Google Scholar]
  73. HurS. Double-stranded RNA sensors and modulators in innate immunity.Annu. Rev. Immunol.201937134937510.1146/annurev‑immunol‑042718‑04135630673536
    [Google Scholar]
  74. KatoK. AhmadS. ZhuZ. YoungJ.M. MuX. ParkS. MalikH.S. HurS. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.Mol. Cell2021813599613.e810.1016/j.molcel.2020.11.04733373584
    [Google Scholar]
  75. LangX. TangT. JinT. DingC. ZhouR. JiangW. TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity.J. Exp. Med.2017214245947310.1084/jem.2016059228031478
    [Google Scholar]
  76. MengJ. YaoZ. HeY. ZhangR. ZhangY. YaoX. YangH. ChenL. ZhangZ. ZhangH. BaoX. HuG. WuT. ChengJ. ARRDC4 regulates enterovirus 71-induced innate immune response by promoting K63 polyubiquitination of MDA5 through TRIM65.Cell Death Dis.201786e286610.1038/cddis.2017.25728594402
    [Google Scholar]
  77. KamanovaJ. SunH. Lara-TejeroM. GalánJ.E. The salmonella effector protein sopa modulates innate immune responses by targeting TRIM E3 ligase family members.PLoS Pathog.2016124e100555210.1371/journal.ppat.100555227058235
    [Google Scholar]
  78. FiskinE. BhogarajuS. HerhausL. KalayilS. HahnM. DikicI. Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA.Nat. Commun.2017811400410.1038/ncomms1400428084320
    [Google Scholar]
  79. JiangH. GongT. ZhouR. The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases.Adv. Immunol.2020145559310.1016/bs.ai.2019.11.00332081200
    [Google Scholar]
  80. TangT. LiP. ZhouX. WangR. FanX. YangM. QiK. The E3 ubiquitin ligase TRIM65 negatively regulates inflammasome activation through promoting ubiquitination of NLRP3.Front. Immunol.20211274183910.3389/fimmu.2021.74183934512673
    [Google Scholar]
  81. LiY. HuangX. GuoF. LeiT. LiS. Monaghan-NicholsP. JiangZ. XinH.B. FuM. TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation.J. Mol. Cell Biol.202012319020110.1093/jmcb/mjz07731310649
    [Google Scholar]
  82. ZengX. DengX. NiY. BiH. JiangM. WangD. DongP. XiaoY. JiangM. LPS inhibits TRIM65 expression in macrophages and C57BL/6J mouse by activating the ERK1/2 signaling pathway.Exp. Ther. Med.202325418810.3892/etm.2023.1188737021067
    [Google Scholar]
  83. ZhouZ.X. RenZ. YanB.J. QuS.L. TangZ.H. WeiD.H. LiuL.S. FuM.G. JiangZ.S. The role of ubiquitin E3 ligase in atherosclerosis.Curr. Med. Chem.202028115216810.2174/092986732766620030612441832141415
    [Google Scholar]
  84. LiuH. ChenH. DengX. PengY. ZengQ. SongZ. HeW. ZhangL. XiaoT. GaoG. LiB. Knockdown of TRIM28 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration.Chem. Biol. Interact.201931110877210.1016/j.cbi.2019.10877231351049
    [Google Scholar]
  85. BraunerS. JiangX. ThorlaciusG.E. LundbergA.M. ÖstbergT. YanZ.Q. KuchrooV.K. HanssonG.K. Wahren-HerleniusM. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content.Cardiovasc. Res.2018114115816710.1093/cvr/cvx18129016728
    [Google Scholar]
  86. HuangJ. HuangC. YuL. GuanX. LiangS. LiJ. LiangL. WeiM. ZhangL. Bioinspired PROTAC-induced macrophage fate determination alleviates atherosclerosis.Acta Pharmacol. Sin.202344101962197610.1038/s41401‑023‑01088‑537169852
    [Google Scholar]
  87. YuT. GanS. ZhuQ. DaiD. LiN. WangH. ChenX. HouD. WangY. PanQ. XuJ. ZhangX. LiuJ. PeiS. PengC. WuP. RomanoS. MaoC. HuangM. ZhuX. ShenK. QinJ. XiaoY. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24.Nat. Commun.2019101435310.1038/s41467‑019‑12384‑231554795
    [Google Scholar]
  88. HeoK.S. ChangE. LeN.T. CushmanH. YehE.T.H. FujiwaraK. AbeJ. De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis.Circ. Res.2013112691192310.1161/CIRCRESAHA.111.30017923381569
    [Google Scholar]
  89. SayinV.I. KhanO.M. PehlivanogluL.E. StaffasA. IbrahimM.X. AsplundA. ÅgrenP. NiltonA. BergströmG. BergoM.O. BorénJ. LindahlP. Loss of one copy of Zfp148 reduces lesional macrophage proliferation and atherosclerosis in mice by activating p53.Circ. Res.2014115978178910.1161/CIRCRESAHA.115.30499225212213
    [Google Scholar]
  90. WuG. CaiJ. HanY. ChenJ. HuangZ.P. ChenC. CaiY. HuangH. YangY. LiuY. XuZ. HeD. ZhangX. HuX. PinelloL. ZhongD. HeF. YuanG.C. WangD.Z. ZengC. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity.Circulation2014130171452146510.1161/CIRCULATIONAHA.114.01167525156994
    [Google Scholar]
  91. WuY.T. MaS.Y. SunW.Q. ShenW.W. ZhuH.T. ZhangQ. ChenH.F. TRIM65 promotes invasion of endometrial stromal cells by activating ERK1/2/C-myc signaling via ubiquitination of DUSP6.J. Clin. Endocrinol. Metab.2021106252653810.1210/clinem/dgaa80433146694
    [Google Scholar]
  92. ZhangF. XiaM. JiangJ. WangS. ZhaoQ. YuC. YuJ. XianD. LiX. ZhangL. LiuY. PengM. Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy.Sci. Rep.20221211503010.1038/s41598‑022‑19027‑536056063
    [Google Scholar]
  93. LiuH. ZhouZ. DengH. TianZ. WuZ. LiuX. RenZ. JiangZ. Trim65 attenuates isoproterenol-induced cardiac hypertrophy by promoting autophagy and ameliorating mitochondrial dysfunction via the Jak1/Stat1 signaling pathway.Eur. J. Pharmacol.202394917573510.1016/j.ejphar.2023.17573537080331
    [Google Scholar]
  94. WanY. DongP. ZhuX. LeiY. ShenJ. LiuW. LiuK. ZhangX. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022.Front. Med.2022996310410.3389/fmed.2022.96310436052333
    [Google Scholar]
  95. SubramanianS. GengH. TanX.D. Cell death of intestinal epithelial cells in intestinal diseases.Sheng Li Xue Bao202072330832432572429
    [Google Scholar]
  96. HuangY. ChenT. JiangM. XiongC. MeiC. NieJ. ZhangQ. ZhuQ. HuangX. ZhangX. LiY. E3 ligase TRIM65 alleviates intestinal ischemia/reperfusion injury through inhibition of TOX4-mediated apoptosis.Cell Death Dis.20241512910.1038/s41419‑023‑06410‑x38212319
    [Google Scholar]
  97. LiT. FuB. ZhangX. ZhouY. YangM. CaoM. ChenY. TanY. HuR. Overproduction of gastrointestinal 5-ht promotes colitis-associated colorectal cancer progression via enhancing NLRP3 inflammasome activation.Cancer Immunol. Res.2021991008102310.1158/2326‑6066.CIR‑20‑104334285037
    [Google Scholar]
  98. LiangM. ChenX. WangL. QinL. WangH. SunZ. ZhaoW. GengB. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression.J. Exp. Clin. Cancer Res.202039117610.1186/s13046‑020‑01688‑732867817
    [Google Scholar]
  99. ZhangX. LiC. ChenD. HeX. ZhaoY. BaoL. WangQ. ZhouJ. XieY. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion.Inflamm. Res.202271114115510.1007/s00011‑021‑01522‑634854954
    [Google Scholar]
  100. ZhangM. ShiZ. PengX. CaiD. PengR. LinY. DaiL. LiJ. ChenY. XiaoJ. DongS. WangW. ChenY. HeH. NLRP3 inflammasome-mediated Pyroptosis induce Notch signal activation in endometriosis angiogenesis.Mol. Cell. Endocrinol.202357411195210.1016/j.mce.2023.11195237268099
    [Google Scholar]
  101. MercerJ. BennettM. The role of p53 in atherosclerosis.Cell Cycle20065171907190910.4161/cc.5.17.316616929177
    [Google Scholar]
  102. MerchedA.J. WilliamsE. ChanL. Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling.Arterioscler. Thromb. Vasc. Biol.20032391608161410.1161/01.ATV.0000084825.88022.5312842843
    [Google Scholar]
  103. WangH. HeF. LiangB. JingY. ZhangP. LiuW. ZhaoH. p53-dependent LincRNA-p21 protects against proliferation and anti-apoptosis of vascular smooth muscle cells in atherosclerosis by upregulating SIRT7 via MicroRNA-17-5p.J. Cardiovasc. Transl. Res.202114342644010.1007/s12265‑020‑10074‑933169349
    [Google Scholar]
  104. GaoF. WangX.C. LuoZ.D. HuG.Q. MaM.Q. LiangY. XuB.L. LinX.H. LncRNA HOXA11-AS promotes vascular endothelial cell injury in atherosclerosis by regulating the miR-515-5p/ROCK1 axis.ESC Heart Fail.2022942259227110.1002/ehf2.1381535578440
    [Google Scholar]
  105. WangX. ChengL. FuH. ChanC.Z.Y. TseG. LiuT. LiG. Endothelial-derived apt1-mediated macrophage-endothelial cell interactions participate in the development of atherosclerosis by regulating the ras/mapk signaling pathway.Life202212455110.3390/life1204055135455042
    [Google Scholar]
  106. ZhengX. LiuJ. GongX. ZhangX. MaS. Circ_0002984 enhances growth, invasion, and migration in PDGF-bb–induced vascular smooth muscle cells through miR-379-5p/FRS2 axis.J. Cardiovasc. Pharmacol.202178687588410.1097/FJC.000000000000114334882114
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673304966240614091547
Loading
/content/journals/cmc/10.2174/0109298673304966240614091547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test