Skip to content
2000
Volume 32, Issue 30
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The complex etiology of Ischemia-Reperfusion Injury (IRI) induced by liver transplantation (LT) and the “one-target-focused” method limit the development of effective therapeutic interventions. We aimed to reveal the specific active ingredients and mechanisms involved in the Chinese herb Georgi (SBG) in alleviating IRI in LT.

Methods

The active ingredients and potential macromolecular targets of SBG were screened through related databases. The differentially expressed genes of LT were obtained from GSE151648. The protein-protein interaction network was constructed by the STRING database, and Cytoscape 3.7.1 was used to construct a compound-target-disease network. GO and KEGG enrichment analyses were performed on the DAVID database. Finally, the main active components of SBG and the corresponding mechanisms were verified in a donation after circulatory death (DCD) rat LT model.

Results

Thirty-two active ingredients of SBG and their targets were identified, and a total of 38 intersection targets were obtained. GO function and KEGG pathway enrichment analyses demonstrated that the plasma membrane and its components play an important role. Molecular docking showed baicalein, the core component of SBG, had a strong binding ability to all hub targets. Next, in DCD rats, baicalein was proven to improve liver function, alleviate pathological injury and apoptosis, and increase the survival rate. Baicalein also significantly affected the expression of 7 hub genes. Furthermore, baicalein could inhibit ferroptosis by inhibiting phospholipid peroxidation.

Conclusion

Baicalein, the main component of SBG, could alleviate IRI, affect the expression of hub genes, and inhibit ferroptosis in LT.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673304206240702062057
2024-07-10
2025-09-29
Loading full text...

Full text loading...

References

  1. LiuJ. ManK. Mechanistic insight and clinical implications of ischemia/reperfusion injury post liver transplantation.Cell. Mol. Gastroenterol. Hepatol.20231561463147410.1016/j.jcmgh.2023.03.00336940849
    [Google Scholar]
  2. BodzinA.S. BakerT.B. Liver transplantation today: Where we are now and where we are going.Liver Transpl.201824101470147510.1002/lt.2532030080954
    [Google Scholar]
  3. DarW.A. SullivanE. BynonJ.S. EltzschigH. JuC. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms.Liver Int.201939578880110.1111/liv.1409130843314
    [Google Scholar]
  4. ZhaiY. PetrowskyH. HongJ.C. BusuttilR.W. Kupiec-WeglinskiJ.W. Ischaemia–reperfusion injury in liver transplantation-from bench to bedside.Nat. Rev. Gastroenterol. Hepatol.2013102798910.1038/nrgastro.2012.22523229329
    [Google Scholar]
  5. de RougemontO. LehmannK. ClavienP.A. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver.Liver Transpl.200915101172118210.1002/lt.2187619790166
    [Google Scholar]
  6. ItoT. NainiB.V. MarkovicD. AzizA. YounanS. LuM. HiraoH. KadonoK. KojimaH. DiNorciaJ. AgopianV.G. YersizH. FarmerD.G. BusuttilR.W. Kupiec-WeglinskiJ.W. KaldasF.M. Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients.Am. J. Transplant.202121261462510.1111/ajt.1621932713098
    [Google Scholar]
  7. HiraoH. NakamuraK. Kupiec-WeglinskiJ.W. Liver ischaemia–reperfusion injury: a new understanding of the role of innate immunity.Nat. Rev. Gastroenterol. Hepatol.202219423925610.1038/s41575‑021‑00549‑834837066
    [Google Scholar]
  8. HiraoH. DeryK.J. KageyamaS. NakamuraK. Kupiec-WeglinskiJ.W. Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside.Free Radic. Biol. Med.2020157758210.1016/j.freeradbiomed.2020.02.01232084514
    [Google Scholar]
  9. FelliE. FelliE. MuttilloE.M. UradeT. LaraccaG.G. GiannelliV. FamularoS. GenyB. EttorreG.M. RomboutsK. PinzaniM. DianaM. Gracia-SanchoJ. Liver ischemia-reperfusion injury: From trigger loading to shot firing.Liver Transpl.202329111226123310.1097/LVT.000000000000025237728488
    [Google Scholar]
  10. WangA. GongY. PeiZ. JiangL. XiaL. WuY. Paeoniflorin ameliorates diabetic liver injury by targeting the TXNIP-mediated NLRP3 inflammasome in db/db mice.Int. Immunopharmacol.202210910879210.1016/j.intimp.2022.10879235483236
    [Google Scholar]
  11. LiuX. JiangL. LiY. HuangY. HuX. ZhuW. WangX. WuY. MengX. QiX. Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease.Acta Pharmacol. Sin.20224319611010.1038/s41401‑021‑00721‑534253875
    [Google Scholar]
  12. ZhangM. MaL. JiangL. GaoL. WangX. HuangY. QiX. WuY. LiuX. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction.J. Ethnopharmacol.202331011642210.1016/j.jep.2023.11642236972781
    [Google Scholar]
  13. LeiL. ZhaoJ. LiuX.Q. ChenJ. QiX.M. XiaL.L. WuY.G. Wogonin alleviates kidney tubular epithelial injury in diabetic nephropathy by inhibiting PI3K/Akt/NF-κB signaling pathways.Drug Des. Devel. Ther.2021153131315010.2147/DDDT.S31088234295152
    [Google Scholar]
  14. WangJ. WongY.K. LiaoF. What has traditional Chinese medicine delivered for modern medicine?Expert Rev. Mol. Med.201820e410.1017/erm.2018.329747718
    [Google Scholar]
  15. LiuS.H. ChuangW.C. LamW. JiangZ. ChengY.C. Safety surveillance of traditional Chinese medicine: Current and future.Drug Saf.201538211712810.1007/s40264‑014‑0250‑z25647717
    [Google Scholar]
  16. LiaoH. YeJ. GaoL. LiuY. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review.Biomed. Pharmacother.202113311091710.1016/j.biopha.2020.11091733217688
    [Google Scholar]
  17. FangD. ZhengC. MaY. Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: A review.J. Integr. Med.2023211172510.1016/j.joim.2022.09.00536216728
    [Google Scholar]
  18. ZhaoT. TangH. XieL. ZhengY. MaZ. SunQ. LiX. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.J. Pharm. Pharmacol.20197191353136910.1111/jphp.1312931236960
    [Google Scholar]
  19. ShenY. ZhaoY. ZhongC. HuangH. YangZ. WuM. LuL. YangR. KeX. Primary study on the effects and mechanisms of separate and combined decoctions of Scutellaria baicalensis Georgi - Coptis chinensis Franch extracts in relieving acute alcoholic liver injury in rats.J. Ethnopharmacol.202432411779010.1016/j.jep.2024.11779038253276
    [Google Scholar]
  20. HuQ. ZhangW. WuZ. TianX. XiangJ. LiL. LiZ. PengX. WeiS. MaX. ZhaoY. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects.Pharmacol. Res.202116510544410.1016/j.phrs.2021.10544433493657
    [Google Scholar]
  21. DongQ. ChuF. WuC. HuoQ. GanH. LiX. LiuH. Scutellaria baicalensis Georgi extract protects against alcohol-induced acute liver injury in mice and affects the mechanism of ER stress.Mol. Med. Rep.20161343052306210.3892/mmr.2016.494126936686
    [Google Scholar]
  22. DuX.S. LiH.D. YangX.J. LiJ.J. XuJ.J. ChenY. XuQ.Q. YangL. HeC.S. HuangC. MengX.M. LiJ. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis.Int. Immunopharmacol.20197510567110.1016/j.intimp.2019.05.05631377590
    [Google Scholar]
  23. LiH.D. ChenX. YangY. HuangH.M. ZhangL. ZhangX. ZhangL. HuangC. MengX.M. LiJ. Wogonin attenuates inflammation by activating PPAR-γ in alcoholic liver disease.Int. Immunopharmacol.2017509510610.1016/j.intimp.2017.06.01328646664
    [Google Scholar]
  24. ZhaoD. GaoY. SuY. ZhouY. YangT. LiY. WangY. SunY. ChenL. ZhangF. ZhangZ. WangF. ShaoJ. ZhengS. Oroxylin A regulates cGAS DNA hypermethylation induced by methionine metabolism to promote HSC senescence.Pharmacol. Res.202318710659010.1016/j.phrs.2022.10659036464146
    [Google Scholar]
  25. LiuG. WeiC. YuanS. ZhangZ. LiJ. ZhangL. WangG. FangL. Wogonoside attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis through SOCS1 / P53 / SLC7A11 pathway.Phytother. Res.202236114230424310.1002/ptr.755835817562
    [Google Scholar]
  26. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.11818936753
    [Google Scholar]
  27. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.11630636858276
    [Google Scholar]
  28. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  29. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  30. LinY. XiangL. LiX. TangQ. MengF. ChenW. Exploring the mechanism of Yi-Jing decoction in treating polycystic ovary syndrome by using network pharmacology.Curr. Med. Chem.202330212463247410.2174/092986732966622050818061135532255
    [Google Scholar]
  31. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms1306696422837674
    [Google Scholar]
  32. YamanishiY. KoteraM. KanehisaM. GotoS. Drug- target interaction prediction from chemical, genomic and pharmacological data in an integrated framework.Bioinformatics20102612i246i25410.1093/bioinformatics/btq17620529913
    [Google Scholar]
  33. XuX. BiJ. PingL. LiP. LiF. A network pharmacology approach to determine the synergetic mechanisms of herb couple for treating rheumatic arthritis.Drug Des. Devel. Ther.20181296797910.2147/DDDT.S16190429731604
    [Google Scholar]
  34. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  35. SosaR.A. TerryA.Q. KaldasF.M. JinY.P. RossettiM. ItoT. LiF. AhnR.S. NainiB.V. GroysbergV.M. ZhengY. AzizA. Nevarez-MejiaJ. ZarrinparA. BusuttilR.W. GjertsonD.W. Kupiec-WeglinskiJ.W. ReedE.F. Disulfide high-mobility group box 1 drives ischemia-reperfusion injury in human liver transplantation.Hepatology20217331158117510.1002/hep.3132432426849
    [Google Scholar]
  36. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  37. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  38. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  39. PanQ. ChengY. ShaoZ.G. WangA.Y. LiuY.F. Prediction of rat liver transplantation outcomes using energy metabolites measured by microdialysis.Hepatobiliary Pancreat. Dis. Int.201817539240110.1016/j.hbpd.2018.09.00230220522
    [Google Scholar]
  40. WeiS.M. HuangY.M. Baicalein alleviates testicular ischemia-reperfusion injury in a rat model of testicular torsion-detorsion.Oxid. Med. Cell. Longev.2022202211010.1155/2022/160346936388170
    [Google Scholar]
  41. YeZ. ZhangF. WangP. RanY. LiuC. LuJ. ZhangM. YaoL. Baicalein relieves brain injury via inhibiting ferroptosis and endoplasmic reticulum stress in a rat model of cardiac arrest.Shock202359343444110.1097/SHK.000000000000205836427096
    [Google Scholar]
  42. GaillardT. Evaluation of autodock and autodock vina on the CASF-2013 benchmark.J. Chem. Inf. Model.20185881697170610.1021/acs.jcim.8b0031229989806
    [Google Scholar]
  43. StockwellB.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications.Cell2022185142401242110.1016/j.cell.2022.06.00335803244
    [Google Scholar]
  44. WuS. YangJ. SunG. HuJ. ZhangQ. CaiJ. YuanD. LiH. HeiZ. YaoW. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury.Br. J. Pharmacol.2021178183783379610.1111/bph.1551833959955
    [Google Scholar]
  45. ChengF. KovácsI.A. BarabásiA.L. Network-based prediction of drug combinations.Nat. Commun.2019101119710.1038/s41467‑019‑09186‑x30867426
    [Google Scholar]
  46. MalekiS.J. CrespoJ.F. CabanillasB. Anti-inflammatory effects of flavonoids.Food Chem.201929912512410.1016/j.foodchem.2019.12512431288163
    [Google Scholar]
  47. WenK. FangX. YangJ. YaoY. NandakumarK.S. SalemM.L. ChengK. Recent research on flavonoids and their biomedical applications.Curr. Med. Chem.20212851042106610.2174/1875533XMTA4BMTMl532660393
    [Google Scholar]
  48. WangT. LiQ. BiK. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate.Asian J. Pharmaceut. Sci.2018131122310.1016/j.ajps.2017.08.00432104374
    [Google Scholar]
  49. AparicioS. A systematic computational study on flavonoids.Int. J. Mol. Sci.20101152017203810.3390/ijms1105201720559499
    [Google Scholar]
  50. SongX. GongZ. LiuK. KouJ. LiuB. LiuK. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation.Redox Biol.20203410155910.1016/j.redox.2020.10155932473460
    [Google Scholar]
  51. ZhangY.Y. LiH.X. ChenY.Y. FangH. YuY.N. LiuJ. JingZ.W. WangZ. WangY.Y. Convergent and divergent pathways decoding hierarchical additive mechanisms in treating cerebral ischemia-reperfusion injury.CNS Neurosci. Ther.201420325326310.1111/cns.1220524351012
    [Google Scholar]
  52. BaiJ. WangQ. QiJ. YuH. WangC. WangX. RenY. YangF. Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia–reperfusion injury.Phytomedicine20196315303510.1016/j.phymed.2019.15303531377586
    [Google Scholar]
  53. GelderblomM. LeypoldtF. LewerenzJ. BirkenmayerG. OrozcoD. LudewigP. ThundyilJ. ArumugamT.V. GerloffC. TolosaE. MaherP. MagnusT. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice.J. Cereb. Blood Flow Metab.201232583584310.1038/jcbfm.2011.18922234339
    [Google Scholar]
  54. RaoJ. ChengF. ZhouH. YangW. QiuJ. YangC. NiX. YangS. XiaY. PanX. ZhangF. LuL. WangX. Nogo-B is a key mediator of hepatic ischemia and reperfusion injury.Redox Biol.20203710174510.1016/j.redox.2020.10174533099216
    [Google Scholar]
  55. NakanoT. ChenI.H. GotoS. LaiC.Y. TsengH.P. HsuL.W. ChiuK.W. LinC.C. WangC.C. ChengY.F. ChenC.L. Hepatic miR-301a as a liver transplant rejection biomarker? and its role for interleukin-6 production in hepatocytes.OMICS2017211556610.1089/omi.2016.016428271982
    [Google Scholar]
  56. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  57. ZhouY. ZhouH. HuaL. HouC. JiaQ. ChenJ. ZhangS. WangY. HeS. JiaE. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis.Free Radic. Biol. Med.2021171556810.1016/j.freeradbiomed.2021.05.00933974977
    [Google Scholar]
  58. WangL. JiangM. DuanD. ZhaoZ. GeL. TengX. LiuB. LiuB. ChenP. LuM. Hyperthermia-conditioned OECs serum-free-conditioned medium induce NSC differentiation into neuron more efficiently by the upregulation of HIF-1 alpha and binding activity.Transplantation201497121225123210.1097/TP.000000000000011824717226
    [Google Scholar]
  59. HarnossJ.M. CaiJ. HinterkopfS. RadhakrishnanP. SchmittA. DupovacM. NeesL.K. StrowitzkiM.J. TaylorC.T. SchneiderM. Prolyl hydroxylase inhibition mitigates allograft injury during liver transplantation.Transplantation202210610e430e44010.1097/TP.000000000000425835849574
    [Google Scholar]
  60. LiP. WangJ. ZouY. SunZ. ZhangM. GengZ. XuW. WangD. Interaction of Hsp90AA1 with phospholipids stabilizes membranes under stress conditions.Biochim. Biophys. Acta Biomembr.20191861245746510.1016/j.bbamem.2018.11.00930517848
    [Google Scholar]
  61. ZuehlkeA.D. BeebeK. NeckersL. PrinceT. Regulation and function of the human HSP90AA1 gene.Gene2015570181610.1016/j.gene.2015.06.01826071189
    [Google Scholar]
  62. NiuM. ZhangB. LiL. SuZ. PuW. ZhaoC. WeiL. LianP. LuR. WangR. WazirJ. GaoQ. SongS. WangH. Targeting HSP90 inhibits proliferation and induces apoptosis through AKT1/ERK pathway in lung cancer.Front. Pharmacol.20221272419210.3389/fphar.2021.72419235095481
    [Google Scholar]
  63. AugoffK. Hryniewicz-JankowskaA. TabolaR. StachK. MMP9: A tough target for targeted therapy for cancer.Cancers2022147184710.3390/cancers1407184735406619
    [Google Scholar]
  64. SoccalP.M. GascheY. MiniatiD.N. HoytG. BerryG.J. DoyleR.L. TheodoreJ. RobbinsR.C. Matrix metalloproteinase inhibition decreases ischemia-reperfusion injury after lung transplantation.Am. J. Transplant.200441415010.1046/j.1600‑6135.2003.00277.x14678033
    [Google Scholar]
  65. FrantzS. AdamekA. FraccarolloD. TillmannsJ. WidderJ.D. DieneschC. SchäferA. PodolskayaA. HeldM. RuettenH. ErtlG. BauersachsJ. The eNOS enhancer AVE 9488: A novel cardioprotectant against ischemia reperfusion injury.Basic Res. Cardiol.2009104677377910.1007/s00395‑009‑0041‑319548059
    [Google Scholar]
  66. BuiT.M. WiesolekH.L. SumaginR. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis.J. Leukoc. Biol.2020108378779910.1002/JLB.2MR0220‑549R32182390
    [Google Scholar]
  67. DaiC. LiH. WangY. TangS. VelkovT. ShenJ. Inhibition of oxidative stress and ALOX12 and NF-κB pathways contribute to the protective effect of baicalein on carbon tetrachloride-induced acute liver injury.Antioxidants202110697610.3390/antiox1006097634207230
    [Google Scholar]
  68. LiP. ZhangR. WangM. ChenY. ChenZ. KeX. ZuoL. WangJ. Baicalein prevents fructose-induced hepatic steatosis in rats: In the regulation of fatty acid de novo synthesis, fatty acid elongation and fatty acid oxidation.Front. Pharmacol.20221391732910.3389/fphar.2022.91732935847050
    [Google Scholar]
  69. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB. StockwellB.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  70. WangH. GuoS. WangB. LiuX. GaoL. ChenC. WuY. Carnosine attenuates renal ischemia-reperfusion injury by inhibiting GPX4-mediated ferroptosis.Int Immunopharmacol.2023124Pt A11085010.1016/j.intimp.2023.110850
    [Google Scholar]
  71. HuangY. JiangL. LiuX. WangX. GaoL. ZengH. ZhuW. HuX. WuY. Melatonin alleviates acute kidney injury by inhibiting NRF2/Slc7a11 axis-mediated ferroptosis.Oxid. Med. Cell. Longev.2022202212410.1155/2022/477624335979396
    [Google Scholar]
  72. YamadaN. KarasawaT. WakiyaT. SadatomoA. ItoH. KamataR. WatanabeS. KomadaT. KimuraH. SanadaY. SakumaY. MizutaK. OhnoN. SataN. TakahashiM. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis.Am. J. Transplant.20202061606161810.1111/ajt.1577331909544
    [Google Scholar]
  73. QiD. ChenP. BaoH. ZhangL. SunK. SongS. LiT. Dimethyl fumarate protects against hepatic ischemia-reperfusion injury by alleviating ferroptosis via the NRF2/SLC7A11/HO-1 axis.Cell Cycle202322781882810.1080/15384101.2022.215501636482709
    [Google Scholar]
  74. NazzalM. MadsenE.C. ArmstrongA. van NispenJ. MuraliV. SongE. VoigtM. MadnawatH. WeluA. ManithodyC. SuriA. KrebsJ. GilbertE. SamaddarA. BlackallD. CarpenterD. VarmaC. TeckmanJ. JainA.K. Novel NMP split liver model recapitulates human IRI and demonstrates ferroptosis modulators as a new therapeutic strategy.Pediatr. Transplant.2022262e1416410.1111/petr.1416434633130
    [Google Scholar]
  75. WuJ. WangY. JiangR. XueR. YinX. WuM. MengQ. Ferroptosis in liver disease: New insights into disease mechanisms.Cell Death Discov.20217127610.1038/s41420‑021‑00660‑434611144
    [Google Scholar]
  76. JiaD. GuoS. JiaZ. GaoZ. YouK. GongJ. LiS. N-acetylcysteine in the donor, recipient, or both donor and recipient in liver transplantation: A systematic review with meta-analysis and trial sequential analysis.Transplantation202310791976199010.1097/TP.000000000000459737069635
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673304206240702062057
Loading
/content/journals/cmc/10.2174/0109298673304206240702062057
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test