Skip to content
2000
Volume 7, Issue 1
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Myocardial hypertrophy secondary to hypertension is associated with a parallel addition of sarcomeres that characteristically increases cardiomyocyte cell size and width. From a cellular perspective, concentric hypertrophy differs from eccentric hypertrophy in that with eccentric hypertrophy, cardiomyocytes adapt by increasing sarcomeres in series thereby inducing an increase in cell length. Recently, specific signaling cascades have been associated with concentric and eccentric hypertrophic phenotypes, i.e. calcineurin and IGF, respectively. Even though compensatory concentric hypertrophy is often regarded as an adaptation to normalize wall stress in hypertension, it is frequently manifest with abnormal cardiac function. While recent reports have questioned the necessity of wall stress normalization, the mechanisms associated with the dichotomous adaptive and maladaptive aspects of myocardial hypertrophy are important to understand. Few data exist with respect to how exercise training superimposed on hypertension impacts LV remodeling. Several recent studies in animals have shown that exercise superimposed on hypertension can induce cardiomyocyte proliferation and reduce apoptosis while potentiating cardiomyocyte hypertrophy. Interestingly, neither Akt nor calcineurin abundance seems to underlie exercise-induced hypertrophy in hypertension. In fact, calcineurin abundance is blunted in exercise trained hypertensive hearts. In humans, exercise training in hypertensive patients has been shown to either regress or not change the extent of cardiac hypertrophy. Overall there are only a few studies examining cardiac morphometry and function in subjects with hypertension. The purpose of this review will be to cover the major human and animal findings on this topic, address relevant hypertrophic signaling pathways with exercise superimposed on hypertesnion, and broaden the discussion of exercise and hypertension towards how exercise impacts the cardiomyocyte cell cycle.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/157340211795909016
2011-02-01
2025-09-01
Loading full text...

Full text loading...

/content/journals/chyr/10.2174/157340211795909016
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test