Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Transdermal Drug Delivery System (TDDS) is one of the controlled drug delivery systems whose purpose is to deliver medication through the skin at a predetermined and regulated rate. Nanotechnology has enhanced the skin’s absorption of lipophilic, low-molecular-weight medicines with low-dose efficacy, making transdermal drug delivery systems a viable technique for treating various conditions. TDDS permits greater skin permeation of hydrophilic drugs, and scientists are studying macromolecules to improve disease treatment and vaccine development. While additional study is needed to determine nanocarrier safety, this approach could increase the usage of transdermal routes for administering hypertension medicines. As hypertension remains the most prevalent form of cardiovascular illness, we focus on how nanoparticles as skin delivery methods might be used to better treat this global problem. In addition, patients may not be willing to comply with traditional doses due to the greater frequency of drug administration necessary for long-term care of hypertension conditions. Transdermal drug delivery has provided numerous benefits to the medical community since its inception. These benefits include the drug's non-invasive nature, extended therapeutic effect, reduced adverse effects, greater bioavailability, improved patient compliance, and simple termination. This review aims to explore the potential of several antihypertensive drugs for transdermal delivery.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021373953250416105243
2025-04-28
2025-11-08
Loading full text...

Full text loading...

References

  1. DesmetE. GeleV.M. LambertJ. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders.Expert Opin. Drug Deliv.201714110912210.1080/17425247.2016.1206073 27348356
    [Google Scholar]
  2. AmamotoT. HirakawaS. SantaT. FunatsuT. KatoM. Surface modification of silica nanoparticles using 4-aryloxy boron dipyrromethene (BODIPY) enhances skin permeation.J. Mater. Chem. B Mater. Biol. Med.20164477676768010.1039/C6TB02188C 32263824
    [Google Scholar]
  3. JampilekJ. BrychtovaK. Azone analogues: Classification, design, and transdermal penetration principles.Med. Res. Rev.201232590794710.1002/med.20227 22886628
    [Google Scholar]
  4. TakeuchiI. ShimamuraY. KakamiY. Transdermal delivery of 40-nm silk fibroin nanoparticles.Colloids Surf. B Biointerfaces201917556456810.1016/j.colsurfb.2018.12.012 30579057
    [Google Scholar]
  5. WatkinsonA.C. BungeA.L. HadgraftJ. LaneM.E. Nanoparticles do not penetrate human skin--a theoretical perspective.Pharm. Res.20133081943194610.1007/s11095‑013‑1073‑9 23722409
    [Google Scholar]
  6. FernandesR. SmythN.R. MuskensO.L. Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality.Small201511671372110.1002/smll.201401913 25288531
    [Google Scholar]
  7. SindhuR.K. GoyalA. YaparA.E. CavaluS. Bioactive compounds and nanodelivery perspectives for treatment of cardiovascular diseases.Appl. Sci.202111221103110.3390/app112211031
    [Google Scholar]
  8. DengY. EdiriwickremaA. YangF. LewisJ. GirardiM. SaltzmanW.M. A sunblock based on bioadhesive nanoparticles.Nat. Mater.201514121278128510.1038/nmat4422 26413985
    [Google Scholar]
  9. FilonL.F. MauroM. AdamiG. BovenziM. CroseraM. Nanoparticles skin absorption: New aspects for a safety profile evaluation.Regul. Toxicol. Pharmacol.201572231032210.1016/j.yrtph.2015.05.005 25979643
    [Google Scholar]
  10. BaroliB. EnnasM.G. LoffredoF. IsolaM. PinnaR. Arturo López-QuintelaM. Penetration of metallic nanoparticles in human full-thickness skin.J. Invest. Dermatol.200712771701171210.1038/sj.jid.5700733 17380118
    [Google Scholar]
  11. MortensenL.J. OberdörsterG. PentlandA.P. DeLouiseL.A. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR.Nano Lett.2008892779278710.1021/nl801323y 18687009
    [Google Scholar]
  12. ZhuY. ChoeC.S. AhlbergS. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.J. Biomed. Opt.201420505100610.1117/1.JBO.20.5.051006 25394476
    [Google Scholar]
  13. LademannJ. KnorrF. RichterH. Hair follicles--an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Germany.Skin Pharmacol. Physiol.200821315015510.1159/000131079 18523412
    [Google Scholar]
  14. SharmaN. BehlT. SinghS. Targeting nanotechnology and nutraceuticals in obesity: An updated approach.Curr. Pharm. Des.202228403269328810.2174/1381612828666221003105619 36200206
    [Google Scholar]
  15. CampbellN. YoungE.R. DrouinD. A framework for discussion on how to improve prevention, management, and control of hypertension in Canada.Can. J. Cardiol.201228326226910.1016/j.cjca.2011.11.008 22284588
    [Google Scholar]
  16. KearneyP.M. WheltonM. ReynoldsK. MuntnerP. WheltonP.K. HeJ. Global burden of hypertension: Analysis of worldwide data.Lancet2005365945521722310.1016/S0140‑6736(05)17741‑1 15652604
    [Google Scholar]
  17. RalstonR.A. LeeJ.H. TrubyH. PalermoC.E. WalkerK.Z. A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods.J. Hum. Hypertens.201226131310.1038/jhh.2011.3 21307883
    [Google Scholar]
  18. AqilM. AliA. SultanaY. ParvezN. Matrix type transdermal drug delivery systems of metoprolol tartrate: Skin toxicity and in vivo characterization.Ethiop Pharm J2004225360
    [Google Scholar]
  19. BarryBW Drug delivery routes in skin: A novel approach.Adv Drug Deliv Rev200254S3140(Suppl. 1)10.1016/S0169‑409X(02)00113‑8 12460714
    [Google Scholar]
  20. LangerR. Transdermal drug delivery: Past progress, current status, and future prospects.Adv. Drug Deliv. Rev.200456555755810.1016/j.addr.2003.10.021 15019745
    [Google Scholar]
  21. KumariS. GoyalA. GürerS.E. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  22. AqilM. AhadA. SultanaY. AliA. Status of terpenes as skin penetration enhancers.Drug Discov. Today20071223-241061106710.1016/j.drudis.2007.09.001 18061886
    [Google Scholar]
  23. AhadA. AqilM. KohliK. SultanaY. MujeebM. AliA. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan.Nanomedicine20128223724910.1016/j.nano.2011.06.004 21704600
    [Google Scholar]
  24. ChourasiaM.K. KangL. ChanS.Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery.Results Pharma Sci.201111606710.1016/j.rinphs.2011.10.002 25755983
    [Google Scholar]
  25. JainS.K. GuptaY. JainA. RaiK. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes.Drug Deliv.200815314114710.1080/10717540801952407 18379926
    [Google Scholar]
  26. GilletA. LecomteF. HubertP. DucatE. EvrardB. PielG. Skin penetration behaviour of liposomes as a function of their composition.Eur. J. Pharm. Biopharm.2011791435310.1016/j.ejpb.2011.01.011 21272638
    [Google Scholar]
  27. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.004 22205066
    [Google Scholar]
  28. FinninB.C. MorganT.M. Transdermal penetration enhancers: Applications, limitations, and potential.J. Pharm. Sci.1999881095595810.1021/js990154g 10514338
    [Google Scholar]
  29. ChopraH. BibiS. MishraA.K. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases.J. Nanomater.202220221415572910.1155/2022/4155729
    [Google Scholar]
  30. LoftssonT. Cyclodextrins and the biopharmaceutics classification system of drugs.J. Incl. Phenom. Macrocycl. Chem.200244636710.1515/fv‑2016
    [Google Scholar]
  31. StaskinD.R. Transdermal systems for overactive bladder: Principles and practice.Rev. Urol.20035Suppl 8S26S30 16985986
    [Google Scholar]
  32. ShahS. ShahD. Transdermal drug delivery technology revisited: Recent advances.Pharmainfo Net20086538
    [Google Scholar]
  33. JalwalP. JangraA. DahiyaL. SangwanY. SarohaR. A review on transdermal patches.Pharm. Res.20103139149
    [Google Scholar]
  34. MamathaT. RaoV.J. MukkantiK. RameshG. Development of matrix type transdermal patches of lercanidipine hydrochloride: Physicochemical and in vitro characterization.Daru2010181916 22615587
    [Google Scholar]
  35. SinghA.R. DesuP.K. NakkalaR.K. Nanotechnology-based approaches applied to nutraceuticals.Drug Deliv. Transl. Res.202212348549910.1007/s13346‑021‑00960‑3 33738677
    [Google Scholar]
  36. VijayanV. SumanthM.H. SumanL. VinayT. SrinivasraoD. KumarJ.K. Development and physiochemical, in vitro evaluation of antihypertensive transdermal patches.J Pharm Sci Res20102171177
    [Google Scholar]
  37. ValivetiS. PaudelK.S. HammellD.C. In vitro/in vivo correlation of transdermal naltrexone prodrugs in hairless guinea pigs.Pharm. Res.200522698198910.1007/s11095‑005‑4593‑0 15948042
    [Google Scholar]
  38. JamakandiV.G. MullaJ. VinayB. ShivakumarH. Formulation, characterization, and evaluation of matrix-type transdermal patches of a model antihypertensive drug.Asian J. Pharma2009311910.4103/0973‑8398.49177
    [Google Scholar]
  39. GannuR. VishnuV.Y. KishanV. RaoM.Y. Development of nitrendipine transdermal patches: in vitro and ex vivo characterization.Curr. Drug Deliv.200741697610.2174/156720107779314767 17269919
    [Google Scholar]
  40. ShahS. JoshiR. PrabhakarP. Formulation and evaluation of transdermal patches of papaverine hydrochloride.Asian J. Pharm.2010417910.4103/0973‑8398.63974
    [Google Scholar]
  41. WangJ. RuanJ. ZhangC. YeY. CaiY. WuY. Development and evaluation of the sinomenine transdermal patch.Pak. J. Pharm. Sci.2008214407410 18930863
    [Google Scholar]
  42. KumarP. YadavN. ChaudharyB. Lipid nanocapsule: A novel approach to drug delivery system formulation development.Curr. Pharm. Biotechnol.202425326828410.2174/1389201024666230523114350 37231750
    [Google Scholar]
  43. BhowmikD. PusupoletiK.R. DuraivelS. KumarS.K.P. Recent approaches in transdermal drug delivery system.Pharma Innov J20132399108
    [Google Scholar]
  44. GhoshP. MilewskiM. PaudelK. In vitro/in vivo correlations in transdermal product development.Ther. Deliv.2015691117112410.4155/tde.15.72 26419538
    [Google Scholar]
  45. FilonL.F. CroseraM. AdamiG. BovenziM. RossiF. MainaG. Human skin penetration of gold nanoparticles through intact and damaged skin.Nanotoxicology20115449350110.3109/17435390.2010.551428 21319954
    [Google Scholar]
  46. CampbellC.S.J. Contreras-RojasL.R. Delgado-CharroM.B. GuyR.H. Objective assessment of nanoparticle disposition in mammalian skin after topical exposure.J. Control. Release2012162120120710.1016/j.jconrel.2012.06.024 22732479
    [Google Scholar]
  47. Miquel-JeanjeanC. CrépelF. RaufastV. Penetration study of formulated nanosized titanium dioxide in models of damaged and sun-irradiated skins.Photochem. Photobiol.20128861513152110.1111/j.1751‑1097.2012.01181.x 22642395
    [Google Scholar]
  48. AlnasifN. ZoschkeC. FleigeE. Penetration of normal, damaged and diseased skin — An in vitro study on dendritic core–multishell nanotransporters.J. Control. Release2014185455010.1016/j.jconrel.2014.04.006 24727058
    [Google Scholar]
  49. KumarP. YadavN. ChaudharyB. Promises of phytochemical based nano drug delivery systems in the management of cancer.Chem. Biol. Interact.202235110974510.1016/j.cbi.2021.109745 34774839
    [Google Scholar]
  50. Monteiro-RiviereN.A. BristolD.G. ManningT.O. RogersR.A. RiviereJ.E. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species.J. Invest. Dermatol.199095558258610.1111/1523‑1747.ep12505567 2230221
    [Google Scholar]
  51. PhillipsC.A. MichniakB.B. Transdermal delivery of drugs with differing lipophilicities using azone analogs as dermal penetration enhancers.J. Pharm. Sci.199584121427143310.1002/jps.2600841208
    [Google Scholar]
  52. ZakrewskyM. KumarS. MitragotriS. Nucleic acid delivery into skin for the treatment of skin disease: Proofs-of-concept, potential impact, and remaining challenges.J. Control. Release201521944545610.1016/j.jconrel.2015.09.017 26385169
    [Google Scholar]
  53. SivaramA.J. RajithaP. MayaS. JayakumarR. SabithaM. Nanogels for delivery, imaging and therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157450953310.1002/wnan.1328 25581024
    [Google Scholar]
  54. ImamS.S. AhadA. AqilM. AkhtarM. SultanaY. AliA. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: In-vitro characterization, and in-vivo appraisal.Mater. Sci. Eng. C2017751198120510.1016/j.msec.2017.02.149 28415407
    [Google Scholar]
  55. AhmedT.A. El-SayK.M. AljaeidB.M. FahmyU.A. Abd-AllahF.I. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.Int. J. Pharm.20165001-224525410.1016/j.ijpharm.2016.01.017 26775063
    [Google Scholar]
  56. MaanS. KharR.K. MazumderR. YadavN. KhanU.A. Fabrication and evaluation of controlled release transdermal drug delivery system of carvedilol using design expert software for the management of hypertension.J. Young Pharm.202214329530110.5530/jyp.2022.14.58
    [Google Scholar]
  57. KamranM. AhadA. AqilM. ImamS.S. SultanaY. AliA. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment.Int. J. Pharm.20165051-214715810.1016/j.ijpharm.2016.03.030 27005906
    [Google Scholar]
  58. AlomraniA.H. BadranM.M. Flexosomes for transdermal delivery of meloxicam: Characterization and antiinflammatory activity.Artif. Cells Nanomed. Biotechnol.201745230531210.3109/21691401.2016.1147452 26924417
    [Google Scholar]
  59. KalitaB. DasM.K. SarmaM. DekaA. Sustained anti-inflammatory effect of resveratrol-phospholipid complex embedded polymeric patch.AAPS PharmSciTech201718362964510.1208/s12249‑016‑0542‑y 27173988
    [Google Scholar]
  60. RostamiE. KashanianS. AzandaryaniA.H. FaramarziH. DolatabadiJ.E.N. OmidfarK. Drug targeting using solid lipid nanoparticles.Chem. Phys. Lipids2014181566110.1016/j.chemphyslip.2014.03.006 24717692
    [Google Scholar]
  61. RabieiM. KashanianS. SamavatiS.S. JamasbS. McInnesS.J.P. Nanomaterial and advanced technologies in transdermal drug delivery.J. Drug Target.202028435636710.1080/1061186X.2019.1693579 31851847
    [Google Scholar]
  62. ElgindyN.A. MehannaM.M. MohyeldinS.M. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery.Int. J. Pharm.20165011-216717910.1016/j.ijpharm.2016.01.049 26828671
    [Google Scholar]
  63. TalukdarD. KumarP. ChaudharyB. Biotransformation, multifunctional recycling mechanism of nanostructures, and evaluation of the safety of nanoscale materials.Particuology202382768610.1016/j.partic.2023.01.009
    [Google Scholar]
  64. KimH. LeeH. SeongK.Y. LeeE. YangS.Y. YoonJ. Visible light‐triggered on‐demand drug release from hybrid hydrogels and its application in transdermal patches.Adv. Healthc. Mater.20154142071207710.1002/adhm.201500323 26265317
    [Google Scholar]
  65. KimJ. GauvinR. YoonH.J. Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery.Macromol. Res.201624121115112510.1007/s13233‑016‑4147‑9
    [Google Scholar]
  66. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.71 29657852
    [Google Scholar]
  67. AliH.S.M. HanafyA.F. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: Engineering, formulation, and evaluation.J. Pharm. Sci.2017106140241010.1016/j.xphs.2016.10.010 27866687
    [Google Scholar]
  68. JijieR. BarrasA. BoukherroubR. SzuneritsS. Nanomaterials for transdermal drug delivery: Beyond the state of the art of liposomal structures.J. Mater. Chem. B Mater. Biol. Med.20175448653867510.1039/C7TB02529G 32264260
    [Google Scholar]
  69. YangJ. HuJ. HeB. ChengY. Transdermal delivery of therapeutic agents using dendrimers (US20140018435A1): A patent evaluation.Expert Opin. Ther. Pat.201525101209121410.1517/13543776.2015.1044974 26150049
    [Google Scholar]
  70. GundlooriR.V.N. SingamA. KilliN. Nanobased intravenous and transdermal drug delivery systems.In: Applications of Targeted Nano Drugs and Delivery Systems.Amsterdam, NetherlandsElsevier201955159410.1016/B978‑0‑12‑814029‑1.00019‑3
    [Google Scholar]
  71. BalakrishnanP. ShanmugamS. LeeW.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery.Int. J. Pharm.20093771-21810.1016/j.ijpharm.2009.04.020 19394413
    [Google Scholar]
  72. TavanoL. PicciN. IoeleG. MuzzalupoR. Tetracycline-niosomes versus tetracycline hydrochloride-niosomes: How to modulate encapsulation and percutaneous permeation properties.Journal of Drug201711610.24218/jod.2017.6
    [Google Scholar]
  73. MuzzalupoR. PérezL. PinazoA. TavanoL. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release.Int. J. Pharm.20175291-224525210.1016/j.ijpharm.2017.06.083 28668583
    [Google Scholar]
  74. ChoiM.J. MaibachH.I. Liposomes and niosomes as topical drug delivery systems.Skin Pharmacol. Physiol.200518520921910.1159/000086666 16015019
    [Google Scholar]
  75. BragagniM. ScozzafavaA. MastrolorenzoA. SupuranC.T. MuraP. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy.Int. J. Pharm.2015494125826310.1016/j.ijpharm.2015.08.036 26283280
    [Google Scholar]
  76. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/0929867324666171009120154 28990515
    [Google Scholar]
  77. FangJ.Y. YuS.Y. WuP.C. HuangY.B. TsaiY.H. In vitro skin permeation of estradiol from various proniosome formulations.Int. J. Pharm.20012151-2919910.1016/S0378‑5173(00)00669‑4 11250095
    [Google Scholar]
  78. EidR.K. EssaE.A. MaghrabyE.G.M. Essential oils in niosomes for enhanced transdermal delivery of felodipine.Pharm. Dev. Technol.201924215716510.1080/10837450.2018.1441302 29441809
    [Google Scholar]
  79. PivettaT.P. SimõesS. AraújoM.M. CarvalhoT. ArrudaC. MarcatoP.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties.Colloids Surf. B Biointerfaces201816428129010.1016/j.colsurfb.2018.01.053 29413607
    [Google Scholar]
  80. BhatiaS. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications.In: Natural Polymer Drug Delivery Systems.ChamSpringer2016339310.1007/978‑3‑319‑41129‑3_2
    [Google Scholar]
  81. LimS.H. NgJ.Y. KangL. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.Biofabrication20179101501010.1088/1758‑5090/9/1/015010 28071597
    [Google Scholar]
  82. AqilM. SultanaY. AliA. Matrix type transdermal drug delivery systems of metoprolol tartrate: in vitro characterization.Acta Pharm.2003532119125 14764246
    [Google Scholar]
  83. HaqueT. TalukderM.M.U. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum.Adv. Pharm. Bull.20188216917910.15171/apb.2018.021 30023318
    [Google Scholar]
  84. NiuX.Q. ZhangD.P. BianQ. Mechanism investigation of ethosomes transdermal permeation.Int. J. Pharm. X2019110002710.1016/j.ijpx.2019.100027 31517292
    [Google Scholar]
  85. HussainA. AltamimiM.A. AfzalO. AltamimiA.S.A. RamzanM. KhurooT. Mechanistic of vesicular ethosomes and elastic liposomes on permeation profiles of acyclovir across artificial membrane, human cultured epiderm, and rat skin: In vitro-ex vivo study.Pharmaceutics2023159218910.3390/pharmaceutics15092189 37765159
    [Google Scholar]
  86. GilletA. CompèreP. LecomteF. Liposome surface charge influence on skin penetration behaviour.Int. J. Pharm.20114111-222323110.1016/j.ijpharm.2011.03.049 21458550
    [Google Scholar]
  87. PierreM.B.R. dos Santos Miranda CostaI. CostaM. Liposomal systems as drug delivery vehicles for dermal and transdermal applications.Arch. Dermatol. Res.2011303960762110.1007/s00403‑011‑1166‑4 21805180
    [Google Scholar]
  88. BendasE.R. TadrosM.I. Enhanced transdermal delivery of salbutamol sulfate via ethosomes.AAPS PharmSciTech20078421310.1208/pt0804107 18181528
    [Google Scholar]
  89. MaghrabyE.G.M.M. WilliamsA.C. BarryB.W. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes.Int. J. Pharm.20042761-214316110.1016/j.ijpharm.2004.02.024 15113622
    [Google Scholar]
  90. Honeywell-NguyenP.L. FrederikP.M. BomansP.H.H. JungingerH.E. BouwstraJ.A. Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: Characterization and in vitro transport studies.Pharm. Res.200219799199710.1023/A:1016466406176 12180552
    [Google Scholar]
  91. TouitouE. GodinB. DayanN. WeissC. PiliponskyA. Levi-SchafferF. Intracellular delivery mediated by an ethosomal carrier.Biomaterials200122223053305910.1016/S0142‑9612(01)00052‑7 11575480
    [Google Scholar]
  92. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery.Int. J. Pharm.20063221-2606610.1016/j.ijpharm.2006.05.027 16806755
    [Google Scholar]
  93. DubeyV. MishraD. JainN.K. Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery.Eur. J. Pharm. Biopharm.200767239840510.1016/j.ejpb.2007.03.007 17452098
    [Google Scholar]
  94. VermaP. PathakK. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation.Nanomedicine20128448949610.1016/j.nano.2011.07.004 21839053
    [Google Scholar]
  95. NayakA.K. PalD. Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology.Int. J. Biol. Macromol.201149478479310.1016/j.ijbiomac.2011.07.013 21816168
    [Google Scholar]
  96. MalakarJ. SenS.O. NayakA.K. SenK.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery.Saudi Pharm. J.201220435536310.1016/j.jsps.2012.02.001 23960810
    [Google Scholar]
  97. AhadA. AqilM. KohliK. Chemical penetration enhancers: A patent review.Expert Opin. Ther. Pat.200919796998810.1517/13543770902989983 19552513
    [Google Scholar]
  98. RizwanM. AqilM. AhadA. SultanaY. AliM.M. Transdermal delivery of valsartan: I. Effect of various terpenes.Drug Dev. Ind. Pharm.200834661862610.1080/03639040701833740 18568912
    [Google Scholar]
  99. SelvamR.P. SinghA.K. SivakumarT. Transdermal Drug Delivery Systems for Antihypertensive Drugs – A Review.Int J Pharm Biomed Res2010118
    [Google Scholar]
  100. AhadA. Al-JenoobiF.I. Al-MohizeaA.M. AqilM. KohliK. Transdermal delivery of calcium channel blockers for hypertension.Expert Opin. Drug Deliv.20131081137115310.1517/17425247.2013.783562 23527660
    [Google Scholar]
  101. AqilM. SultanaY. AliA. Transdermal delivery of β-blockers.Expert Opin. Drug Deliv.20063340541810.1517/17425247.3.3.405 16640500
    [Google Scholar]
  102. CostagliolaC. VerolinoM. Leonarda De RosaM. IaccarinoG. CiancagliniM. MastropasquaL. Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects.Exp. Eye Res.200071216717110.1006/exer.2000.0866 10930321
    [Google Scholar]
  103. RaoR.P. ReddyM.N. RamakrishnaS. DiwanP.V. Comparative in vivo evaluation of propranolol hydrochloride after oral and transdermal administration in rabbits.Eur. J. Pharm. Biopharm.2003561818510.1016/S0939‑6411(03)00038‑9 12837485
    [Google Scholar]
  104. DeyB.K. NathL.K. MohantiB. BhowmikB.B. Development and evaluation of propranolol hydrochloride transdermal patches by using hydrophilic and hydrophobic polymer.Ind J Pharm Educ Res200741388393
    [Google Scholar]
  105. ZhaoK. SinghJ. In vitro percutaneous absorption enhancement of propranolol hydrochloride through porcine epidermis by terpenes/ethanol.J. Control. Release199962335936610.1016/S0168‑3659(99)00171‑6 10528073
    [Google Scholar]
  106. HoriM. MaibackH.I. GuyR.H. Enhancement of propranolol hydrochloride and diazepam skin absorption in vitro. II: Drug, vehicle, and enhancer penetration kinetics.J. Pharm. Sci.199281433033310.1002/jps.2600810406 1501066
    [Google Scholar]
  107. HassanN. AhadA. AliM. AliJ. Chemical permeation enhancers for transbuccal drug delivery.Expert Opin. Drug Deliv.2010719711210.1517/17425240903338758 20017661
    [Google Scholar]
  108. KubotaK. KoyamaE. YasudaK. Skin irritation induced by topically applied timolol.Br. J. Clin. Pharmacol.199131447147510.1111/j.1365‑2125.1991.tb05564.x 2049257
    [Google Scholar]
  109. SutinenR. ParonenP. SaanoV. UrttiA. Water-activated, pH-controlled patch in transdermal administration of timolol: II. Drug absorption and skin irritation.Eur. J. Pharm. Sci.2000111253110.1016/S0928‑0987(00)00083‑X 10913750
    [Google Scholar]
  110. SoniS. DixitV.K. Comparison between the iontophoretic and passive transdermal delivery of timolol maleate across human cadaver skin.Pharmazie19944917374 8140139
    [Google Scholar]
  111. SutinenR. ParonenP. UrttiA. Water-activated, pH-controlled patch in transdermal administration of timolol: I. Preclinical tests.Eur. J. Pharm. Sci.2000111192410.1016/S0928‑0987(00)00082‑8 10913749
    [Google Scholar]
  112. TsukaharaS. SasakiT. YamabayashiS. ShimizuY. Bupranolol, a beta 1- and beta 2-blocker, causes constriction of the pupil in men.Ophthalmic Res.1986181111410.1159/000265407 3951800
    [Google Scholar]
  113. WallerA.R. ChasseaudL.F. BonnR. Metabolic fate of the β-blocker 14C-bupranolol in humans, dogs, and rhesus monkeys.Drug Metab. Dispos.1982101515410.1016/S0090‑9556(25)07835‑3 6124383
    [Google Scholar]
  114. WellsteinA. KüppersH. PitschnerH.F. PalmD. Transdermal delivery of bupranolol: Pharmacodynamics and beta-adrenoceptor occupancy.Eur. J. Clin. Pharmacol.198631441942210.1007/BF00613517 3028816
    [Google Scholar]
  115. OgisoT. HataT. IwakiM. TaninoT. Transdermal absorption of bupranolol in rabbit skin in vitro and in vivo.Biol. Pharm. Bull.200124558859110.1248/bpb.24.588 11379788
    [Google Scholar]
  116. BabuR.J. PanditJ.K. Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems.Int. J. Pharm.2005288232533410.1016/j.ijpharm.2004.10.008 15620873
    [Google Scholar]
  117. BabuR.J. PanditJ.K. Effect of penetration enhancers on the transdermal delivery of bupranolol through rat skin.Drug Deliv.200512316516910.1080/10717540590931936 16025846
    [Google Scholar]
  118. SalvettiA. GhiadoniL. Thiazide diuretics in the treatment of hypertension: An update.J. Am. Soc. Nephrol.2006174_suppl_2S25S2910.1681/ASN.2005121329 16565243
    [Google Scholar]
  119. StoschitzkyK. EggingerG. ZernigG. KleinW. LindnerW. Stereoselective features of (R)‐ and (S)‐atenolol: Clinical pharmacological, pharmacokinetic, and radioligand binding studies.Chirality199351151910.1002/chir.530050104 8383518
    [Google Scholar]
  120. VaithiyalingamS.R. SastryS.V. DehonR.H. ReddyI.K. KhanM.A. Long-term stability characterization of a controlled release gastrointestinal therapeutic system coated with a cellulose acetate pseudolatex.Pharmazie20015616669 11210674
    [Google Scholar]
  121. MundargiR.C. PatilS.A. AgnihotriS.A. AminabhaviT.M. Evaluation and controlled release characteristics of modified xanthan films for transdermal delivery of atenolol.Drug Dev. Ind. Pharm.2007331799010.1080/03639040600975030 17192254
    [Google Scholar]
  122. SinghB. SinghR. BandyopadhyayS. KapilR. GargB. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol.Colloids Surf. B Biointerfaces201310146547410.1016/j.colsurfb.2012.07.017 23010056
    [Google Scholar]
  123. MundargiR.C. PatilS.A. AgnihotriS.A. AminabhaviT.M. Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis.Drug Dev. Ind. Pharm.200733325526410.1080/03639040600897127 17454058
    [Google Scholar]
  124. KimJ. ShinS.C. Controlled release of atenolol from the ethylene-vinyl acetate matrix.Int. J. Pharm.20042731-2232710.1016/j.ijpharm.2003.12.004 15010126
    [Google Scholar]
  125. AgrawalS.S. MunjalP. Permeation studies of atenolol and metoprolol tartrate from three different polymer matrices for transdermal delivery.Indian J. Pharm. Sci.200769453553910.4103/0250‑474X.36940
    [Google Scholar]
  126. BariaA.H. PatelR.P. Design and evaluation of transdermal drug delivery system of atenolol as an antihypertensive drug.Inventi Rapid Pharm Tech201118
    [Google Scholar]
  127. ShinS.C. ChoiJ.S. Enhanced bioavailability of atenolol by transdermal administration of the ethylene-vinyl acetate matrix in rabbits.Eur. J. Pharm. Biopharm.200356343944310.1016/S0939‑6411(03)00133‑4 14602188
    [Google Scholar]
  128. BharkatiyaM. NemaR.K. BhatnagarM. Development and characterization of transdermal patches of metoprolol tartrate.Asian J. Pharm. Clin. Res.20103130134
    [Google Scholar]
  129. CorboM. LiuJ.C. ChienY.W. Bioavailability of propranolol following oral and transdermal administration in rabbits.J. Pharm. Sci.199079758458710.1002/jps.2600790707 2398465
    [Google Scholar]
  130. ThakareP.R. RokadeM.M. MahaleN.B. ChaudhariS.R. Formulation, development and characterization of transdermal film of metoprolol succinate using hydrophilic and hydrophobic polymer.Inventi Rapid NDDS201244318
    [Google Scholar]
  131. CostelloC.T. JeskeA.H. Iontophoresis: Applications in transdermal medication delivery.Phys. Ther.199575655456310.1093/ptj/75.6.554 7770500
    [Google Scholar]
  132. LeopoldG. PabstJ. UngethümW. BühringK.U. Basic pharmacokinetics of bisoprolol, a new highly beta 1-selective adrenoceptor antagonist.J. Clin. Pharmacol.198626861662110.1002/j.1552‑4604.1986.tb02959.x 2878941
    [Google Scholar]
  133. WenH. JiangH. LuZ. Carvedilol ameliorates sympathetic nerve sprouting and electrical remodeling after myocardial infarction in rats.Biomed. Pharmacother.201064744645010.1016/j.biopha.2010.01.012 20359859
    [Google Scholar]
  134. MorganT. Clinical pharmacokinetics and pharmacodynamics of carvedilol.Clin. Pharmacokinet.199426533534610.2165/00003088‑199426050‑00002 7914479
    [Google Scholar]
  135. HokamaN. HobaraN. KameyaH. OhshiroS. SakanashiM. Rapid and simple micro-determination of carvedilol in rat plasma by high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.1999732123323810.1016/S0378‑4347(99)00248‑0 10517241
    [Google Scholar]
  136. MacCarthyE.P. BloomfieldS.S. Labetalol: A review of its pharmacology, pharmacokinetics, clinical uses and adverse effects.Pharmacotherapy19833419321710.1002/j.1875‑9114.1983.tb03252.x 6310529
    [Google Scholar]
  137. ZafarS. AliA. AqilM. AhadA. Transdermal drug delivery of labetalol hydrochloride: Feasibility and effect of penetration enhancers.J. Pharm. Bioallied Sci.20102432132410.4103/0975‑7406.72132 21180464
    [Google Scholar]
  138. DeviK.V. SaisivamS. MariaG.R. DeeptiP.U. Design and evaluation of matrix diffusion controlled transdermal patches of verapamil hydrochloride.Drug Dev. Ind. Pharm.200329549550310.1081/DDC‑120018638 12779279
    [Google Scholar]
  139. ArnabB. BiplabD.K. Formulation, in vitro evaluations and skin irritation study of losartan potassium transdermal patches.Iran J Pharm Sci201063163170
    [Google Scholar]
  140. AboofazeliR. ZiaH. NeedhamT.E. Transdermal delivery of nicardipine: An approach to in vitro permeation enhancement.Drug Deliv.20029423924710.1080/10717540260397855 12511202
    [Google Scholar]
  141. PopliS. DaugirdasJ.T. NeubauerJ.A. HockenberryB. HanoJ.E. IngT.S. Transdermal clonidine in mild hypertension. A randomized, double-blind, placebo-controlled trial.Arch. Intern. Med.1986146112140214410.1001/archinte.1986.00360230056009 3535714
    [Google Scholar]
  142. McMahonF.G. JainA.K. VargasR. FillingimJ. A double-blind comparison of transdermal clonidine and oral captopril in essential hypertension.Clin. Ther.199012288100 2191779
    [Google Scholar]
  143. IshiiR. TagawaT. IshidaT. NaruseT. Antihypertensive effects of a new TDS of clonidine in genetic and experimental rats.Arzneimittelforschung1996463261268 8901146
    [Google Scholar]
  144. TripathiK.D. Essentials of Medical Pharmacology.India: Jaypee Brothers Medical Publisher(P) Ltd20081910.5005/jp/books/10282
    [Google Scholar]
  145. NishidaN. TaniyamaK. SawabeT. ManomeY. Development and evaluation of a monolithic drug-in-adhesive patch for valsartan.Int. J. Pharm.20104021-210310910.1016/j.ijpharm.2010.09.031 20933069
    [Google Scholar]
  146. AhmedM.G. KiranG.B.K. SatishB.P.K. Formulation and evaluation of nifedipine transdermal patches.J. Pharm. Res.20103817851787
    [Google Scholar]
  147. SatturwarP.M. FulzeleS.V. DorleA.K. Evaluation of polymerized rosin for the formulation and development of transdermal drug delivery system: A technical note.AAPS PharmSciTech200564E649E65410.1208/pt060481 16408867
    [Google Scholar]
  148. JitendraB. SubhashP. PathakA.K. Formulation, optimization and evaluation of matrix type transdermal system of lisinopril dihydrate using permeation enhancers.J. Pharm. Res.200811
    [Google Scholar]
  149. SunY. FangL. ZhuM. A drug-in-adhesive transdermal patch for S-amlodipine free base: In vitro and in vivo characterization.Int. J. Pharm.20093821-216517110.1016/j.ijpharm.2009.08.031 19716871
    [Google Scholar]
  150. FanM. LiuW. ZhaoL. NieL. WangY. Engineering nanosystems for transdermal delivery of antihypertensive drugs.Pharm. Dev. Technol.202429326527910.1080/10837450.2024.2324981 38416123
    [Google Scholar]
  151. AndrewsS. LeeJ.W. ChoiS.O. PrausnitzM.R. Transdermal insulin delivery using microdermabrasion.Pharm. Res.20112892110211810.1007/s11095‑011‑0435‑4 21499837
    [Google Scholar]
  152. MadheswaranT. KandasamyM. BoseR.J.C. KaruppagounderV. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems.Drug Discov. Today20192471405141210.1016/j.drudis.2019.05.004 31102731
    [Google Scholar]
  153. WangM. LaiX. ShaoL. LiL. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles.Int. J. Nanomedicine2018134445445910.2147/IJN.S170745 30122919
    [Google Scholar]
  154. DragicevicN. MaibachH. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement.Adv. Drug Deliv. Rev.2018127588410.1016/j.addr.2018.02.003 29425769
    [Google Scholar]
  155. WatkinsonA.C. A commentary on transdermal drug delivery systems in clinical trials.J. Pharm. Sci.201310293082308810.1002/jps.23490 23468246
    [Google Scholar]
  156. PastoreM.N. KaliaY.N. HorstmannM. RobertsM.S. Transdermal patches: History, development and pharmacology.Br. J. Pharmacol.201517292179220910.1111/bph.13059 25560046
    [Google Scholar]
  157. CohanP. Should You Bet on Transdermal Drug Delivery?2019https://www.forbes.com/sites/petercohan/2019/01/21/should-you-bet-on-transdermal-drug-delivery/
  158. RossS.A. LamprouD.A. DouroumisD. Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies.Chem. Commun.201652578772878610.1039/C6CC01289B 27302311
    [Google Scholar]
  159. EconomidouS.N. LamprouD.A. DouroumisD. 3D printing applications for transdermal drug delivery.Int. J. Pharm.2018544241542410.1016/j.ijpharm.2018.01.031
    [Google Scholar]
  160. LimD.J. VinesJ.B. ParkH. LeeS.H. Microneedles: A versatile strategy for transdermal delivery of biological molecules.Int. J. Biol. Macromol.2018110303810.1016/j.ijbiomac.2017.12.027 29223756
    [Google Scholar]
  161. RussiM. MarsonD. LauriniE. PriclS. Targeted drug delivery: Concepts, approaches, and applications.Novel Formulat Fut Trends2024322326510.1016/B978‑0‑323‑91816‑9.00003‑5
    [Google Scholar]
  162. DunuweeraS.P. RajapakseR.M.S.I. RajapaksheR.B.S.D. WijekoonS.H.D.P. ThilakarathnaN.M.G.G.S. RajapakseR.M.G. Review on targeted drug delivery carriers used in nanobiomedical applications.Curr. Nanosci.201915438239710.2174/1573413714666181106114247
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021373953250416105243
Loading
/content/journals/chyr/10.2174/0115734021373953250416105243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test