Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Hypertension is a chronic medical state and a major determining factor for cardiovascular and renal diseases. Both genetic and non-genetic factors contribute to hypertensive conditions among individuals. The Renin-Angiotensin-Aldosterone System (RAAS) is a major genetic target for the anti-hypertension approach.

The majority of classical antihypertensive drugs were mainly focused on the RAAS signaling pathways. Though these antihypertensive drugs control Blood Pressure (BP), they have mild to severe life-threatening effects. Unrevealing effective hypertensive targets for BP management is essential. The effective targets could emerge either from RAAS-dependent or RAAS-independent pathways and/or through the cross-talks among them.

Analyzing the physiopathological mechanisms of hypertension has the benefit of understanding the interactions between these systems which helps in better understanding of drug targets and the importance of emergence of novel therapeutics.

This review is about the signaling pathways involved in hypertension pathogenesis and their cross-talks and it contributes to a better understanding of the etiology of hypertension.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021342501250107052350
2025-01-20
2025-09-04
Loading full text...

Full text loading...

References

  1. Blood pressure/hypertension. Available from: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3155
  2. PurkaitP. HalderK. ThakurS. Ghosh RoyA. RaychaudhuriP. BhattacharyaS. SarkarB.N. NaiduJ.M. Association of angiotensinogen gene SNPs and haplotypes with risk of hypertension in eastern Indian population.Clin. Hypertens.20172311210.1186/s40885‑017‑0069‑x28361007
    [Google Scholar]
  3. MesserliF.H. WilliamsB. RitzE. Essential hypertension.Lancet2007370958759160310.1016/S0140‑6736(07)61299‑917707755
    [Google Scholar]
  4. VertG. ChoryJ. Crosstalk in cellular signaling: Background noise or the real thing?Dev. Cell201121698599110.1016/j.devcel.2011.11.00622172668
    [Google Scholar]
  5. FoëxP. SearJ.W. Hypertension: Pathophysiology and treatment.Contin. Educ. Anaesth. Crit. Care Pain200443717510.1093/bjaceaccp/mkh020
    [Google Scholar]
  6. StaessenJ.A. WangJ. BianchiG. BirkenhägerW.H. Essential hypertensionLancet200336193691629164110.1016/S0140‑6736(03)13302‑812747893
    [Google Scholar]
  7. HopkinsP.N. HuntS.C. Genetics of hypertension.Genet. Med.20035641342910.1097/01.GIM.0000096375.88710.A614614392
    [Google Scholar]
  8. LoganathanL. GopinathK. SankaranarayananV.M. KukretiR. RajendranK. LeeJ.K. MuthusamyK. Computational and pharmacogenomic insights on hypertension treatment: Rational drug design and optimization strategies.Curr. Drug Targets2019211183310.2174/138945012066619080810135631393243
    [Google Scholar]
  9. KrajaA.T. HuntS.C. RaoD.C. Dávila-RománV.G. ArnettD.K. ProvinceM.A. Genetics of hypertension and cardiovascular disease and their interconnected pathways: Lessons from large studies.Curr. Hypertens. Rep.2011131465410.1007/s11906‑010‑0174‑721128019
    [Google Scholar]
  10. LeeW.K. PadmanabhanS. DominiczakA.F. Genetics of hypertension: From experimental models to clinical applications.J. Hum. Hypertens.20001410-1163164710.1038/sj.jhh.100104311095156
    [Google Scholar]
  11. ChernT.H. ChiangF.T. Molecular genetic study of hypertension.Zhonghua Minguo Xinzangxue Hui Zazhi2004203129138
    [Google Scholar]
  12. PaulisL. UngerT. Novel therapeutic targets for hypertension.Nat. Rev. Cardiol.20107843144110.1038/nrcardio.2010.8520567239
    [Google Scholar]
  13. ChughG. PokkunuriI. AsgharM. Renal dopamine and angiotensin II receptor signaling in age-related hypertension.Am. J. Physiol. Renal Physiol.20133041F1F710.1152/ajprenal.00441.201223097467
    [Google Scholar]
  14. PovlsenA. GrimmD. WehlandM. InfangerM. KrügerM. The vasoactive Mas receptor in essential hypertension.J. Clin. Med.20209126710.3390/jcm901026731963731
    [Google Scholar]
  15. DasguptaC. ZhangL. Angiotensin II receptors and drug discovery in cardiovascular disease.Drug Discov. Today2011161-2223410.1016/j.drudis.2010.11.01621147255
    [Google Scholar]
  16. GaoQ. XuL. CaiJ. New drug targets for hypertension: A literature review.Biochim. Biophys. Acta Mol. Basis Dis.20211867316603710.1016/j.bbadis.2020.16603733309796
    [Google Scholar]
  17. FyhrquistF. SaijonmaaO. Renin-angiotensin system revisited.J. Intern. Med.2008264322423610.1111/j.1365‑2796.2008.01981.x18793332
    [Google Scholar]
  18. HsuC.N. TainY.L. Targeting the renin–angiotensin–aldosterone system to prevent hypertension and kidney disease of developmental origins.Int. J. Mol. Sci.2021225229810.3390/ijms2205229833669059
    [Google Scholar]
  19. ArendseL.B. DanserA.H.J. PoglitschM. TouyzR.M. BurnettJ.C.Jr Llorens-CortesC. EhlersM.R. SturrockE.D. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure.Pharmacol. Rev.201971453957010.1124/pr.118.01712931537750
    [Google Scholar]
  20. GoliasCh. CharalabopoulosA. StagikasD. CharalabopoulosK. BatistatouA. The kinin system--bradykinin: Biological effects and clinical implications. Multiple role of the kinin system-bradykinin.Hippokratia200711312412819582206
    [Google Scholar]
  21. SharmaJ.N. Hypertension and the bradykinin system.Curr. Hypertens. Rep.200911317818110.1007/s11906‑009‑0032‑719442326
    [Google Scholar]
  22. SelvarajM. LoganathanL. ThirumalaisamyPK. KuriakoseBB. SampayanEL. MuthusamyK. In silico drug designing for the identification of promising antagonist hit molecules against bradykinin receptor.Comput. Theor. Chem.2021120211333410.1016/j.comptc.2021.113334
    [Google Scholar]
  23. HynynenM. KhalilR. The vascular endothelin system in hypertension-Recent patents and discoveries.Recent Adv. Cardiovasc. Drug Discov.2006119510810.2174/15748900677524426317200683
    [Google Scholar]
  24. SchiffrinE.L. Vascular endothelin in hypertension.Vascul. Pharmacol.2005431192910.1016/j.vph.2005.03.00415955745
    [Google Scholar]
  25. GaliéN. ManesA. BranziA. The endothelin system in pulmonary arterial hypertension.Cardiovasc. Res.200461222723710.1016/j.cardiores.2003.11.02614736539
    [Google Scholar]
  26. RautureauY. SchiffrinE.L. Endothelin in hypertension.Curr. Opin. Nephrol. Hypertens.201221212813610.1097/MNH.0b013e32834f009222257795
    [Google Scholar]
  27. WuQ. Xu-CaiY.O. ChenS. WangW. Corin: New insights into the natriuretic peptide system.Kidney Int.200975214214610.1038/ki.2008.41818716601
    [Google Scholar]
  28. GardnerD.G. ChenS. GlennD.J. GrigsbyC.L. Molecular biology of the natriuretic peptide system: Implications for physiology and hypertension.Hypertension200749341942610.1161/01.HYP.0000258532.07418.fa17283251
    [Google Scholar]
  29. DanielsL.B. MaiselA.S. Natriuretic peptides.J. Am. Coll. Cardiol.200750252357236810.1016/j.jacc.2007.09.02118154959
    [Google Scholar]
  30. IyinikkelJ. MurrayF. GPCRs in pulmonary arterial hypertension: Tipping the balance.Br. J. Pharmacol.2018175153063307910.1111/bph.1417229468655
    [Google Scholar]
  31. Tutunea-FatanE. CaetanoF.A. GrosR. FergusonS.S.G. GRK2 targeted knock-down results in spontaneous hypertension, and altered vascular GPCR signaling.J. Biol. Chem.201529085141515510.1074/jbc.M114.61565825561731
    [Google Scholar]
  32. YangJ. HallJ.E. JoseP.A. ChenK. ZengC. Comprehensive insights in GRK4 and hypertension: From mechanisms to potential therapeutics.Pharmacol. Ther.202223910819410.1016/j.pharmthera.2022.10819435487286
    [Google Scholar]
  33. FeldmanR. GrosR. Impaired vasodilator function in hypertension: The role of alterations in receptor-G protein coupling.Trends Cardiovasc. Med.19988729730510.1016/S1050‑1738(98)00022‑X14987554
    [Google Scholar]
  34. BrinksH.L. EckhartA.D. Regulation of GPCR signaling in hypertension.Biochim. Biophys. Acta Mol. Basis Dis.20101802121268127510.1016/j.bbadis.2010.01.005
    [Google Scholar]
  35. ShenB. Harrison-BernardL.M. FullerA.J. VanderpoolV. SaifudeenZ. El-DahrS.S. The Bradykinin B2 receptor gene is a target of angiotensin II type 1 receptor signaling.J. Am. Soc. Nephrol.20071841140114910.1681/ASN.200610112717344422
    [Google Scholar]
  36. TomB. DendorferA. Jan DanserA.H. Bradykinin, angiotensin-(1–7), and ACE inhibitors: How do they interact?Int. J. Biochem. Cell Biol.200335679280110.1016/S1357‑2725(02)00273‑X12676166
    [Google Scholar]
  37. SquireI.B. O’KaneK.P.J. AndersonN. ReidJ.L. Bradykinin B(2) receptor antagonism attenuates blood pressure response to acute angiotensin-converting enzyme inhibition in normal men.Hypertension200036113213610.1161/01.HYP.36.1.13210904025
    [Google Scholar]
  38. MarcicB. DeddishP.A. JackmanH.L. ErdösE.G. Enhancement of bradykinin and resensitization of its B2 receptor.Hypertension199933383584310.1161/01.HYP.33.3.83510082496
    [Google Scholar]
  39. TschöpeC. SchultheissH.P. WaltherT. Multiple interactions between the renin-angiotensin and the kallikrein-kinin systems: Role of ACE inhibition and AT1 receptor blockade.J. Cardiovasc. Pharmacol.200239447848710.1097/00005344‑200204000‑0000311904521
    [Google Scholar]
  40. SantosR.A.S. FerreiraA.J. Angiotensin-(1–7) and the renin–angiotensin system.Curr. Opin. Nephrol. Hypertens.200716212212810.1097/MNH.0b013e328031f36217293687
    [Google Scholar]
  41. SuJ.B. Different cross-talk sites between the renin–angiotensin and the kallikrein–kinin systems.J. Renin Angiotensin Aldosterone Syst.201415431932810.1177/147032031247485423386283
    [Google Scholar]
  42. SchmaierA.H. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction.Am. J. Physiol. Regul. Integr. Comp. Physiol.20032851R1R1310.1152/ajpregu.00535.200212793984
    [Google Scholar]
  43. CampbellD.J. The renin–angiotensin and the kallikrein–kinin systems.Int. J. Biochem. Cell Biol.200335678479110.1016/S1357‑2725(02)00262‑512676165
    [Google Scholar]
  44. AbadirP.M. PeriasamyA. CareyR.M. SiragyH.M. Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization.Hypertension200648231632210.1161/01.HYP.0000228997.88162.a816754789
    [Google Scholar]
  45. BaderM. AleninaN. YoungD. SantosR.A.S. TouyzR.M. The meaning of Mas.Hypertension20187251072107510.1161/HYPERTENSIONAHA.118.1091830354821
    [Google Scholar]
  46. KostenisE. MilliganG. ChristopoulosA. Sanchez-FerrerC.F. Heringer-WaltherS. SextonP.M. GembardtF. KellettE. MartiniL. VanderheydenP. SchultheissH.P. WaltherT. G-protein-coupled receptor mas is a physiological antagonist of the angiotensin II type 1 receptor.Circulation2005111141806181310.1161/01.CIR.0000160867.23556.7D15809376
    [Google Scholar]
  47. PatelS. HussainT. Dimerization of AT 2 and mas receptors in control of blood pressure.Curr. Hypertens. Rep.20182054110.1007/s11906‑018‑0845‑3
    [Google Scholar]
  48. DiaconuC.C. DragoiC.M. BratuO.G. NeaguT.P. New approaches and perspectives for the pharmacological treatment of arterial hypertension.Farmacia201866340841510.31925/farmacia.2018.3.4
    [Google Scholar]
  49. LaurentS. Antihypertensive drugs.Pharmacol. Res.201712411612510.1016/j.phrs.2017.07.02628780421
    [Google Scholar]
  50. ChengH. HarrisR.C. Potential side effects of renin inhibitors – Mechanisms based on comparison with other renin–angiotensin blockers.Expert Opin. Drug Saf.20065563164110.1517/14740338.5.5.63116907653
    [Google Scholar]
  51. FragassoG. MarantaF. MontanaroC. SalernoA. TorlascoC. MargonatoA. Pathophysiologic therapeutic targets in hypertension: A cardiological point of view.Expert Opin. Ther. Targets201216217919310.1517/14728222.2012.65572422280298
    [Google Scholar]
  52. GhatageT. GoyalS.G. DharA. BhatA. Novel therapeutics for the treatment of hypertension and its associated complications: Peptide- and nonpeptide-based strategies.Hypertens. Res.202144774075510.1038/s41440‑021‑00643‑z33731923
    [Google Scholar]
  53. FoulquierS. SteckelingsU.M. UngerT. Impact of the AT(2) receptor agonist C21 on blood pressure and beyond.Curr. Hypertens. Rep.201214540340910.1007/s11906‑012‑0291‑622836386
    [Google Scholar]
  54. FreemanA.J. VinhA. WiddopR.E. Novel approaches for treating hypertension.F1000 Res.201768010.12688/f1000research.10117.128184289
    [Google Scholar]
  55. JiangF. YangJ. ZhangY. DongM. WangS. ZhangQ. LiuF.F. ZhangK. ZhangC. Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets.Nat. Rev. Cardiol.201411741342610.1038/nrcardio.2014.5924776703
    [Google Scholar]
  56. OparilS. SchmiederR.E. New approaches in the treatment of hypertension.Circ. Res.201511661074109510.1161/CIRCRESAHA.116.30360325767291
    [Google Scholar]
  57. Fraga-SilvaR.A. FerreiraA.J. dos SantosR.A.S. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension.Curr. Hypertens. Rep.2013151313810.1007/s11906‑012‑0324‑123212695
    [Google Scholar]
  58. QaradakhiT. GadanecL.K. McSweeneyK.R. TaceyA. ApostolopoulosV. LevingerI. RimarovaK. EgomE.E. RodrigoL. KruzliakP. KubatkaP. ZulliA. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases.Clin. Exp. Pharmacol. Physiol.202047575175810.1111/1440‑1681.1325131901211
    [Google Scholar]
  59. ShemeshR. ToporikA. LevineZ. HechtI. RotmanG. WoolA. DaharyD. GoferE. KligerY. SofferM.A. RosenbergA. EshelD. CohenY. Discovery and validation of novel peptide agonists for G-protein-coupled receptors.J. Biol. Chem.200828350346433464910.1074/jbc.M80518120018854305
    [Google Scholar]
  60. SavergniniS.Q. BeimanM. LautnerR.Q. de Paula-CarvalhoV. AllahdadiK. PessoaD.C. Costa-FragaF.P. Fraga-SilvaR.A. CojocaruG. CohenY. BaderM. de AlmeidaA.P. RotmanG. SantosR.A.S. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor.Hypertension201056111212010.1161/HYPERTENSIONAHA.110.15294220479330
    [Google Scholar]
  61. KluskensL.D. NelemansS.A. RinkR. de VriesL. Meter-ArkemaA. WangY. WaltherT. KuipersA. MollG.N. HaasM. Angiotensin-(1-7) with thioether bridge: An angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog.J. Pharmacol. Exp. Ther.2009328384985410.1124/jpet.108.14643119038778
    [Google Scholar]
  62. HargovanM. FerroA. Aldosterone synthase inhibitors in hypertension: Current status and future possibilities.JRSM Cardiovasc. Dis.20143204800401452244010.1177/204800401452244024570839
    [Google Scholar]
  63. AndersenK. Aldosterone synthase inhibition in hypertension.Curr. Hypertens. Rep.201315548448810.1007/s11906‑013‑0379‑723917810
    [Google Scholar]
  64. Yugar-ToledoJ.C. ModoloR. de FariaA.P. MorenoH. Managing resistant hypertension: Focus on mineralocorticoid-receptor antagonists.Vasc. Health Risk Manag.20171340341110.2147/VHRM.S13859929081661
    [Google Scholar]
  65. IqbalJ. ParvizY. PittB. Newell-PriceJ. Al-MohammadA. ZannadF. Selection of a mineralocorticoid receptor antagonist for patients with hypertension or heart failure.Eur. J. Heart Fail.201416214315010.1111/ejhf.3124464876
    [Google Scholar]
  66. GradmanA.H. BasileJ.N. CarterB.L. BakrisG.L. MatersonB.J. BlackH.R. IzzoJ.L.Jr OparilS. WeberM.A. Combination therapy in hypertension.J. Am. Soc. Hypertens.201042909810.1016/j.jash.2010.03.00120400053
    [Google Scholar]
  67. Guerrero-GarcíaC. Rubio-GuerraF. Combination therapy in the treatment of hypertension.Drugs Context201871910.7573/dic.21253129899755
    [Google Scholar]
  68. MartyniakA. TomasikP.J. A new perspective on the renin-angiotensin system.Diagnostics20221311610.3390/diagnostics1301001636611307
    [Google Scholar]
  69. FountainJ.H. KaurJ. LappinS.L. Physiology, renin angiotensin system.Treasure Island (FL)2017
    [Google Scholar]
  70. MurpheyL. VaughanD. BrownN. Contribution of bradykinin to the cardioprotective effects of ACE inhibitors.Eur. Heart J. Suppl.20035Suppl. AA37A4110.1016/S1520‑765X(03)90062‑9
    [Google Scholar]
  71. PandeyK.N. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C.Front. Mol. Neurosci.201477510.3389/fnmol.2014.0007525202235
    [Google Scholar]
  72. RintzE. WęgrzynG. FujiiT. TomatsuS. Molecular mechanism of induction of bone growth by the C-type natriuretic peptide.Int. J. Mol. Sci.20222311591610.3390/ijms2311591635682595
    [Google Scholar]
  73. PatelV.B. ZhongJ.C. GrantM.B. OuditG.Y. Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure.Circ. Res.201611881313132610.1161/CIRCRESAHA.116.30770827081112
    [Google Scholar]
  74. AgapitovA.V. HaynesW.G. Role of endothelin in cardiovascular disease.J. Renin Angiotensin Aldosterone Syst.20023111510.3317/jraas.2002.00111984741
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021342501250107052350
Loading
/content/journals/chyr/10.2174/0115734021342501250107052350
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cross-talk; GPCRs; Hypertension; novel approaches; pharmacogenomics; RAAS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test