Skip to content
2000
image of Advancing HIV Treatment Through Nanoparticles: A Precision Medicine Approach

Abstract

The poor solubility and bioavailability of antiretroviral drugs complicate the management of Human Immunodeficiency virus. The efficacy of these medications is diminished due to restricted absorption in the gastrointestinal tract. Patients often exhibit a wide range of reactions attributable to fluctuations in blood drug concentrations. Achieving the target plasma concentrations is challenging and often necessitates higher dosages, which increases the risk of adverse effects. The formulation of pharmaceuticals with poor solubility is a complex and costly process that hinders overall drug development. Given the limitations of traditional formulation strategies to address these issues, it is essential to explore alternative methods. The innovative method of nano-crystallization enhances the solubility and dissolution rates of pharmaceuticals by reducing their particle sizes to the nanoscale. The increased surface area improves the medication's solubility and bioavailability. Nanomedicine antiretroviral medications offer several advantages over their water-insoluble counterparts, including enhanced efficacy and safety, a higher drug load, and a more rapid onset of action. For this study, various databases, including Scopus, PubMed, Google Scholar, ScienceDirect, and Web of Science, were utilized to retrieve relevant literature on nanoparticles for HIV treatment. We examine the challenges associated with current treatment methods for HIV/AIDS and highlight the remarkable potential of nanotechnology to improve both the treatment and prevention of the disease through the development of antiretroviral therapy, gene therapy, immunotherapy, vaccinology, and microbicides. This review article focuses on various nanomedicine approaches used to target HIV in different sites, including the spleen, liver, kidneys, gastrointestinal tract, lungs, and brain.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X399793250808114111
2025-08-27
2025-10-18
Loading full text...

Full text loading...

References

  1. Gulati S. Singh P. Diwan A. Mongia A. Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Medicinal Chemistry 2020 11 11 1252 1266 10.1039/D0MD00298D 34095839
    [Google Scholar]
  2. Zubair A. Zeb A. Shahid S.A. Javed H. Ali M. Molecular characterization and drug resistance pattern in pol gene of HIV-1 sub-subtypes circulating in Lahore, Pakistan. Virus Genes 2025 61 3 324 341 10.1007/s11262‑025‑02149‑z 40146387
    [Google Scholar]
  3. Stratov I. DeRose R. Purcell D. Kent S. Vaccines and vaccine strategies against HIV. Curr. Drug Targets 2004 5 1 71 88 10.2174/1389450043490686 14738219
    [Google Scholar]
  4. Blood G.A.C. Human immunodeficiency virus (HIV). Transfus. Med. Hemother. 2016 43 3 203
    [Google Scholar]
  5. Deeks S.G. Overbaugh J. Phillips A. Buchbinder S. HIV infection. Nat. Rev. Dis. Primers 2015 1 1 15035 10.1038/nrdp.2015.35
    [Google Scholar]
  6. Fanales-Belasio E. Raimondo M. Suligoi B. Buttò S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Ann. Ist. Super. Sanita 2010 46 1 5 14 10.1590/S0021‑25712010000100002 20348614
    [Google Scholar]
  7. Requejo H.I.Z. Worldwide molecular epidemiology of HIV. Rev. Saude Publica 2006 40 2 331 345 10.1590/S0034‑89102006000200023 16583048
    [Google Scholar]
  8. Sandamini N. HIV Treatment and Cure: A Critical Review of Scientific Advances and Therapeutic. 2025 Available from: https://www.researchgate.net/citation/389045894_HIV_Treatment_and_Cure_A_Critical_Review_of_Scientific_Advances_and_Therapeutic_Developments
    [Google Scholar]
  9. Parboosing R. Maguire G.E.M. Govender P. Kruger H.G. Nanotechnology and the treatment of HIV infection. Viruses 2012 4 4 488 520 10.3390/v4040488 22590683
    [Google Scholar]
  10. De Cock K.M. Jaffe H.W. Curran J.W. The evolving epidemiology of HIV/AIDS. AIDS 2012 26 10 1205 1213 10.1097/QAD.0b013e328354622a 22706007
    [Google Scholar]
  11. Henning R.J. Greene J.N. The epidemiology, mechanisms, diagnosis and treatment of cardiovascular disease in adult patients with HIV. Am. J. Cardiovasc. Dis. 2023 13 2 101 121 [PMID: 37213313
    [Google Scholar]
  12. Fainberg J. Kashanian J.A. Recent advances in understanding and managing male infertility. F1000 Res. 2019 8 670 10.12688/f1000research.17076.1 31143441
    [Google Scholar]
  13. Suriyarachchi D.D.C. Katuwavila N.P. Lipid nanoparticles in antiretroviral therapy: A nanotechnology breakthrough for HIV/AIDS treatment. HIV Med. 2025 26 5 658 676 10.1111/hiv.13770 40035225
    [Google Scholar]
  14. Popli P. Meduri R.T. Sharma T. Polymeric and lipidic nanoparticles in transforming anti-HIV combinational therapy: Can they turn the tide? Naunyn Schmiedebergs Arch. Pharmacol. 2025 ••• 1 20 [Epub ahead of print] 10.1007/s00210‑025‑04169‑w 40266304
    [Google Scholar]
  15. Leal L. Guardo A.C. Morón-López S. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS 2018 32 17 2533 2545 10.1097/QAD.0000000000002026 30289805
    [Google Scholar]
  16. Herrera-Carrillo E. Gao Z. Berkhout B. CRISPR therapy towards an HIV cure. Brief. Funct. Genomics 2020 19 3 201 208 10.1093/bfgp/elz021 31711197
    [Google Scholar]
  17. Hussein M. Molina M.A. Berkhout B. Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int. J. Mol. Sci. 2023 24 2 1563 10.3390/ijms24021563 36675077
    [Google Scholar]
  18. Jena R. Vishwas S. Kumar R. Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. Eur. J. Pharmacol. 2022 931 175173 10.1016/j.ejphar.2022.175173 35940236
    [Google Scholar]
  19. Das A.T. Binda C.S. Berkhout B. Elimination of infectious HIV DNA by CRISPR–Cas9. Curr. Opin. Virol. 2019 38 81 88 10.1016/j.coviro.2019.07.001 31450074
    [Google Scholar]
  20. Jansen R. Embden J.D.A. Gaastra W. Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002 43 6 1565 1575 10.1046/j.1365‑2958.2002.02839.x 11952905
    [Google Scholar]
  21. Zubair A. Sujan A. Ali M. Hussain S.M. Current challenges with highly active antiretroviral therapy and new hope and horizon with CRISPR;CAS9 technology for HIV treatment. Chem. Biol. Drug Des. 2025 105 5 e70121 10.1111/cbdd.70121 40356298
    [Google Scholar]
  22. Gurrola T.E. Effah S.N. Sariyer I.K. Dampier W. Nonnemacher M.R. Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front. Microbiol. 2024 15 1393974 10.3389/fmicb.2024.1393974 38812680
    [Google Scholar]
  23. Alkhatib G. Combadiere C. Broder C.C. CC CKR5: A RANTES, MIP-1α; MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996 272 5270 1955 1958 10.1126/science.272.5270.1955 8658171
    [Google Scholar]
  24. Nishita M. Park S.Y. Nishio T. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci. Rep. 2017 7 1 1 10.1038/s41598‑016‑0028‑x 28127051
    [Google Scholar]
  25. Lopalco L. CCR5: from natural resistance to a new anti-HIV strategy. Viruses 2010 2 2 574 600 10.3390/v2020574 21994649
    [Google Scholar]
  26. Hassan H.M. Zubair A. Helal M.H. Almagharbeh W.T. Elmagzoub R.M. New hope and promise with CRISPR-Cas9 technology for the treatment of HIV. Funct. Integr. Genomics 2025 25 1 108 10.1007/s10142‑025‑01613‑1 40411669
    [Google Scholar]
  27. Li D. Forrest B.D. Li Z. International clinical trials of HIV vaccines: II. Phase I trial of an HIV-1 synthetic peptide vaccine evaluating an accelerated immunization schedule in Yunnan, China. Asian Pac. J. Allergy Immunol. 1997 15 2 105 113 [PMID: 9346275
    [Google Scholar]
  28. Wang W. Ye C. Liu J. Zhang D. Kimata J.T. Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 2014 9 12 e115987 10.1371/journal.pone.0115987 25541967
    [Google Scholar]
  29. Xu L. Yang H. Gao Y. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol. Ther. 2017 25 8 1782 1789 10.1016/j.ymthe.2017.04.027 28527722
    [Google Scholar]
  30. Qi C. Li D. Jiang X. Inducing CCR5;32/;32 homozygotes in the human Jurkat CD4+ cell line and primary CD4+ cells by CRISPR-Cas9 genome-editing technology. Mol. Ther. Nucleic Acids 2018 12 267 274 10.1016/j.omtn.2018.05.012 30195765
    [Google Scholar]
  31. Samson M. Libert F. Doranz B.J. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996 382 6593 722 725 10.1038/382722a0 8751444
    [Google Scholar]
  32. Matos A.R. Martins J.S.C.C. Oliveira M.L.A. Garcia C.C. Siqueira M.M. Human CCR5;32 (rs333) polymorphism has no influence on severity and mortality of influenza A(H1N1)pdm09 infection in Brazilian patients from the post pandemic period. Infect. Genet. Evol. 2019 67 55 59 10.1016/j.meegid.2018.10.024 30389547
    [Google Scholar]
  33. Ellwanger J.H. Leal B.K. Valverde-Villegas J.M. CCR5;32 in HCV infection, HCV/HIV co-infection, and HCV-related diseases. Infect. Genet. Evol. 2018 59 163 166 10.1016/j.meegid.2018.02.002 29408489
    [Google Scholar]
  34. Ye L. Wang J. Beyer A.I. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5;32 mutation confers resistance to HIV infection. Proc. Natl. Acad. Sci. USA 2014 111 26 9591 9596 10.1073/pnas.1407473111 24927590
    [Google Scholar]
  35. Borducchi E.N. Cabral C. Stephenson K.E. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 2016 540 7632 284 287 10.1038/nature20583 27841870
    [Google Scholar]
  36. Munier C.M. Andersen C.R. Kelleher A.D. HIV vaccines: Progress to date. Drugs 2011 71 4 387 414 [PMID: 21395355
    [Google Scholar]
  37. Narayanan B.V.H. In-vivo pharmacokinetic studies of Dolutegravir loaded spray dried Chitosan nanoparticles as milk admixture for paediatrics infected with HIV. Sci. Rep. 2022 12 1 1 12 [PMID: 34992227
    [Google Scholar]
  38. Pankrac J. Klein K. McKay P.F. A heterogeneous human immunodeficiency virus-like particle (VLP) formulation produced by a novel vector system. NPJ Vaccines 2018 3 1 2 10.1038/s41541‑017‑0040‑6 29367885
    [Google Scholar]
  39. Matsuo H. Somiya M. Iijima M. Arakawa T. Kuroda S. CD11c-specific bio-nanocapsule enhances vaccine immunogenicity by targeting immune cells. J. Nanobiotechnology 2018 16 1 59 10.1186/s12951‑018‑0386‑6 30077180
    [Google Scholar]
  40. Krammer F. Palese P. Profile of Katalin Karikó and drew Weissman: 2023 Nobel laureates in physiology or medicine. Proc. Natl. Acad. Sci. USA 2024 121 9 e2400423121 10.1073/pnas.2400423121 38381788
    [Google Scholar]
  41. Zubair A. Bibi B. Habib F. Sujan A. Ali M. Clinical trials and recent progress in HIV vaccine development. Funct. Integr. Genomics 2024 24 5 143 10.1007/s10142‑024‑01425‑9 39192058
    [Google Scholar]
  42. Zubair A. mRNA vaccines against HIV: Hopes and challenges. HIV Med. 2025 26 6 824 838
    [Google Scholar]
  43. Chaudhary N. Weissman D. Whitehead K.A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021 20 11 817 838 10.1038/s41573‑021‑00283‑5 34433919
    [Google Scholar]
  44. Ahmed S. Herschhorn A. mRNA-based HIV-1 vaccines. Clin. Microbiol. Rev. 2024 37 3 e00041 e24 10.1128/cmr.00041‑24 39016564
    [Google Scholar]
  45. Pardi N. Krammer F. mRNA vaccines for infectious diseases — advances, challenges and opportunities. Nat. Rev. Drug Discov. 2024 23 11 838 861 10.1038/s41573‑024‑01042‑y 39367276
    [Google Scholar]
  46. Son S. Lee K. Development of mRNA vaccines/therapeutics and their delivery system. Mol. Cells 2023 46 1 41 47 10.14348/molcells.2023.2165 36697236
    [Google Scholar]
  47. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  48. Essink B. Chu L. Seger W. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 2023 23 5 621 633 10.1016/S1473‑3099(22)00764‑2 36682364
    [Google Scholar]
  49. Mandal S. Ghosh J.S. Lohani S.C. A long-term stable cold-chain-friendly HIV mRNA vaccine encoding multi-epitope viral protease cleavage site immunogens inducing immunogen-specific protective T cell immunity. Emerg. Microbes Infect. 2024 13 1 2377606 10.1080/22221751.2024.2377606 38979723
    [Google Scholar]
  50. Collins D.R. Gaiha G.D. Walker B.D. CD8+ T cells in HIV control, cure and prevention. Nat. Rev. Immunol. 2020 20 8 471 482 10.1038/s41577‑020‑0274‑9 32051540
    [Google Scholar]
  51. Zhang P. Narayanan E. Liu Q. A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 2021 27 12 2234 2245 10.1038/s41591‑021‑01574‑5 34887575
    [Google Scholar]
  52. Zubair A. Al-Emam A. Ali M. Hussain S.M. Elmagzoub R.M. Targeting HIV-1 conserved regions: An immunoinformatic pathway to vaccine innovation for the Asia. PLoS One 2025 20 3 e0317382 10.1371/journal.pone.0317382 40117271
    [Google Scholar]
  53. Ahmed S. Parthasarathy D. Newhall R. Enhancing anti-viral neutralization response to immunization with HIV-1 envelope glycoprotein immunogens. NPJ Vaccines 2023 8 1 181 10.1038/s41541‑023‑00774‑z 37996435
    [Google Scholar]
  54. Jacobson J.M. Routy J.P. Welles S. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: A randomized, double-blind, placebo-controlled clinical trial. J. Acquir. Immune Defic. Syndr. 2016 72 1 31 38 10.1097/QAI.0000000000000926 26751016
    [Google Scholar]
  55. Gandhi R.T. Kwon D.S. Macklin E.A. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: Results of a randomized, placebo-controlled clinical trial. J. Acquir. Immune Defic. Syndr. 2016 71 3 246 253 10.1097/QAI.0000000000000852 26379068
    [Google Scholar]
  56. de Jong W. iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy. Trials 2019 20 1 10
    [Google Scholar]
  57. Zubair A. Ali M. Akhtar N. HIV-1 Nef Gene Characterization and Subtype Analysis in Pakistan: A Molecular Docking Approach with Mastoparan-L Peptide. Int. J. Pept. Res. Ther. 2025 31 3 46 10.1007/s10989‑025‑10702‑5
    [Google Scholar]
  58. Zubair A. Ali M. Munir R. Hossain M.B. Assessment of HIV Infection in HIV Patients Admitted to Pakistan Institute of Medical Sciences, Islamabad, Pakistan. Aids Res. Treat. 2025 2025 1 5549074 10.1155/arat/5549074 40230800
    [Google Scholar]
  59. Leggat D.J. Cohen K.W. Willis J.R. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science 2022 378 6623 eadd6502 10.1126/science.add6502 36454825
    [Google Scholar]
  60. Nguyen B. Tolia N.H. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 2021 6 1 70 10.1038/s41541‑021‑00330‑7 33986287
    [Google Scholar]
  61. Reljic R. González-Fernández Á. Nanoparticle vaccines against infectious diseases. Frontiers Media 2019 2615
    [Google Scholar]
  62. Lozano D. An overview of the use of nanoparticles in vaccine development.Nanomaterials (Basel) 2023 13 (12) 1828 10.3390/nano13121828. 37368258
    [Google Scholar]
  63. Sia Z.R. Miller M.S. Lovell J.F. Engineered nanoparticle applications for recombinant influenza vaccines. Mol. Pharm. 2021 18 2 576 592 10.1021/acs.molpharmaceut.0c00383 32787280
    [Google Scholar]
  64. Aikins M.E. Bazzill J. Moon J.J. Vaccine nanoparticles for protection against HIV infection. Nanomedicine (Lond.) 2017 12 6 673 682 10.2217/nnm‑2016‑0381 28244816
    [Google Scholar]
  65. Zhang Y.N. Paynter J. Antanasijevic A. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates. Nat. Commun. 2023 14 1 1985 10.1038/s41467‑023‑37742‑z 37031217
    [Google Scholar]
  66. Cohen K.W. De Rosa S.C. Fulp W.J. A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. Sci. Transl. Med. 2023 15 697 eadf3309 10.1126/scitranslmed.adf3309 37224227
    [Google Scholar]
  67. Nchioua R. Role of zinc-finger antiviral protein in restricting RNA viruses. Universität Ulm 2023
    [Google Scholar]
  68. Rice W. Turpin J. Virus-encoded zinc fingers as targets for antiviral chemotherapy. Rev. Med. Virol. 1996 6 4 187 199 10.1002/(SICI)1099‑1654(199612)6:4<187:AID‑RMV176>3.0.CO;2‑F
    [Google Scholar]
  69. Mamo T. Moseman E.A. Kolishetti N. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond.) 2010 5 2 269 285 10.2217/nnm.10.1 20148638
    [Google Scholar]
  70. Shahiwala A. Amiji M.M. Nanotechnology-based delivery systems in HIV/AIDS therapy. Future HIV Ther. 2007 1 1 49 59 10.2217/17469600.1.1.49
    [Google Scholar]
  71. Choudhary S.K. Margolis D.M. Curing HIV: Pharmacologic approaches to target HIV-1 latency. Annu. Rev. Pharmacol. Toxicol. 2011 51 1 397 418 10.1146/annurev‑pharmtox‑010510‑100237 21210747
    [Google Scholar]
  72. Ojewole E. Mackraj I. Naidoo P. Govender T. Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur. J. Pharm. Biopharm. 2008 70 3 697 710 10.1016/j.ejpb.2008.06.020 18655830
    [Google Scholar]
  73. Lu D-Y HAART in HIV/AIDS treatments: Future trends Infect Disord Drug Targets 2018 18 (1) 15 22 10.2174/1871526517666170505122800 28474549
    [Google Scholar]
  74. Mahajan S Law Aalinkeel Anti-HIV-1 nanotherapeutics: Promises and challenges for the future. Int. J. Nanomedicine 2012 7 5301 5314 10.2147/IJN.S25871 23055735
    [Google Scholar]
  75. Abaidullah N. Muhammad K. Waheed Y. Delving into nanoparticle systems for enhanced drug delivery technologies. AAPS PharmSciTech 2025 26 3 74 10.1208/s12249‑025‑03063‑1 40038143
    [Google Scholar]
  76. Kim P.S. Read S.W. Nanotechnology and HIV: Potential applications for treatment and prevention. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010 2 6 693 702 10.1002/wnan.118 20860050
    [Google Scholar]
  77. Bowen A. Sweeney E.E. Fernandes R. Nanoparticle-based immunoengineered approaches for combating HIV. Front. Immunol. 2020 11 789 10.3389/fimmu.2020.00789 32425949
    [Google Scholar]
  78. Singh L. Kruger H.G. Maguire G.E.M. Govender T. Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017 4 4 105 131 10.1177/2049936117713593 28748089
    [Google Scholar]
  79. Amiji M.M. Vyas T.K. Shah L.K. Role of nanotechnology in HIV/AIDS treatment: Potential to overcome the viral reservoir challenge. Discov. Med. 2006 6 34 157 162 [PMID: 17234137
    [Google Scholar]
  80. Vyas T.K. Shah L. Amiji M.M. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin. Drug Deliv. 2006 3 5 613 628 10.1517/17425247.3.5.613 16948557
    [Google Scholar]
  81. Kumar L. Verma S. Prasad D.N. Bhardwaj A. Vaidya B. Jain A.K. Nanotechnology: A magic bullet for HIV AIDS treatment. Artif. Cells Nanomed. Biotechnol. 2015 43 2 71 86 10.3109/21691401.2014.883400 24564348
    [Google Scholar]
  82. das Neves J Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv. Drug Deliv. Rev. 2010 62 4-5 458 477 10.1016/j.addr.2009.11.017 19914314
    [Google Scholar]
  83. Dou H. Grotepas C.B. McMillan J.M. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J. Immunol. 2009 183 1 661 669 10.4049/jimmunol.0900274 19535632
    [Google Scholar]
  84. Adhikary R.R. More P. Banerjee R. Smart nanoparticles as targeting platforms for HIV infections. Nanoscale 2015 7 17 7520 7534 10.1039/C5NR01285F 25874901
    [Google Scholar]
  85. Soundararajan D. Ramana L.N. Shankaran P. Krishnan U.M. Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf. B Biointerfaces 2022 213 112405 10.1016/j.colsurfb.2022.112405 35255375
    [Google Scholar]
  86. Iannazzo D. Nanotechnology approaches for antiretroviral drugs delivery. J Aids Hiv Infec 2015 1 2 1 13
    [Google Scholar]
  87. Desai J. Thakkar H. Darunavir-loaded lipid nanoparticles for targeting to HIV reservoirs. AAPS PharmSciTech 2018 19 2 648 660 10.1208/s12249‑017‑0876‑0 28948564
    [Google Scholar]
  88. Löbenberg R. Maas J. Kreuter J. Improved body distribution of 14C-labelled AZT bound to nanoparticles in rats determined by radioluminography. J. Drug Target. 1998 5 3 171 179 10.3109/10611869808995872 9606007
    [Google Scholar]
  89. Abadi F.L. Kumar P. Paknikar K. Gajbhiye V. Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: An in vivo proof of concept. J. Nanobiotechnology 2023 21 1 19 10.1186/s12951‑022‑01750‑w 36658575
    [Google Scholar]
  90. Tamizhrasi S. Formulation and evaluation of lamivudine loaded polymethacrylic acid nanoparticles. Int. J. Pharm. Tech. Res. 2009 1 3 411 415
    [Google Scholar]
  91. Ene L. Human immunodeficiency virus in the brain—culprit or facilitator? Infect. Dis. (Auckl.) 2018 11 1178633717752687 10.1177/1178633717752687 29467577
    [Google Scholar]
  92. Osborne O. Peyra N. Nair M. Daunert S. Toborek M. The paradox of HIV blood–brain barrier penetrance and antiretroviral drug delivery deficiencies. Trends Neurosci. 2020 43 9 695 708 10.1016/j.tins.2020.06.007 32682564
    [Google Scholar]
  93. Destache C.J. Brain as an HIV sequestered site. Prog Brain Res 2009 180 225 33 10.1016/S0079‑6123(08)80012‑X 20302837
    [Google Scholar]
  94. Rao K.S. Ghorpade A. Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert Opin. Drug Deliv. 2009 6 8 771 784 10.1517/17425240903081705 19566446
    [Google Scholar]
  95. Li K. Liu B. Ma R. Zhang Q. HIV tissue reservoirs: current advances in research. AIDS Patient Care STDS 2023 37 6 284 296 10.1089/apc.2023.0028 37184898
    [Google Scholar]
  96. Chen J. Zhou T. Zhang Y. The reservoir of latent HIV. Front. Cell. Infect. Microbiol. 2022 12 945956 10.3389/fcimb.2022.945956 35967854
    [Google Scholar]
  97. Fotooh Abadi L. Damiri F. Zehravi M. Novel nanotechnology-based approaches for targeting HIV reservoirs. Polymers (Basel) 2022 14 15 3090 10.3390/polym14153090 35956604
    [Google Scholar]
  98. Cao S. Woodrow K.A. Nanotechnology approaches to eradicating HIV reservoirs. Eur. J. Pharm. Biopharm. 2019 138 48 63 10.1016/j.ejpb.2018.06.002 29879528
    [Google Scholar]
  99. Nel A.E. Mädler L. Velegol D. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009 8 7 543 557 10.1038/nmat2442 19525947
    [Google Scholar]
  100. Li S. Jiang W. Zheng C. Oral delivery of bacteria: Basic principles and biomedical applications. J. Control. Release 2020 327 801 833 10.1016/j.jconrel.2020.09.011 32926886
    [Google Scholar]
  101. Hu H. Yang C. Li M. Shao D. Mao H.Q. Leong K.W. Flash technology-based self-assembly in nanoformulation: Fabrication to biomedical applications. Mater. Today 2021 42 99 116 10.1016/j.mattod.2020.08.019 34421329
    [Google Scholar]
  102. Xu J. Wong D.H.C. Byrne J.D. Chen K. Bowerman C. DeSimone J.M. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. 2013 52 26 6580 6589 10.1002/anie.201209145 23670869
    [Google Scholar]
  103. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.108 27834398
    [Google Scholar]
  104. Wicki A. Witzigmann D. Balasubramanian V. Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015 200 138 157 10.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  105. Lim J.M. Swami A. Gilson L.M. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 2014 8 6 6056 6065 10.1021/nn501371n 24824296
    [Google Scholar]
  106. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  107. Bourquin J. Milosevic A. Hauser D. Biodistribution, clearance, and long;term fate of clinically relevant nanomaterials. Adv. Mater. 2018 30 19 1704307 10.1002/adma.201704307 29389049
    [Google Scholar]
  108. Zhang C. Yan L. Wang X. Progress, challenges, and future of nanomedicine. Nano Today 2020 35 101008 10.1016/j.nantod.2020.101008
    [Google Scholar]
/content/journals/chr/10.2174/011570162X399793250808114111
Loading
/content/journals/chr/10.2174/011570162X399793250808114111
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: HIV ; kidney ; AIDS ; spleen ; liver ; Nanomedicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test