Skip to content
2000
image of Impact of HIV-1 Tat on FDFT1 Suppression, Changes in Cholesterol Level, and KSHV Replication in BCBL1 Cells

Abstract

Introduction

The present study investigated the molecular mechanism by which the transactivator of transcription (Tat) protein of Human Immunodeficiency Virus 1 (HIV-1) activates the replication cycle of Kaposi’s Sarcoma-associated Herpesvirus (KSHV).

Methods

BCBL-1 cells were initially infected with lentivirus overexpressing HIV-1 t. The relative mRNA expression of Farnesyl Diphosphate Farnesyltransferase 1 (), HIV-1 , KSHV Open Reading Frame 73 (), and KSHV Open Reading Frame 50 () was quantified by real-time fluorescent quantitative Polymerase Chain Reaction (RT-qPCR). The cellular cholesterol levels were determined using a total cholesterol assay kit. BCBL-1 cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) served as a positive control for the lytic replication of KSHV. The relative mRNA expression levels of HIV-1 , , KSHV , and KSHV were subsequently evaluated in BCBL-1 cells following infection with lentiviruses for overexpression or FDFT1-RNAi knockdown, and the cellular cholesterol content was quantified.

Results

The findings revealed that HIV-1 Tat downregulated and upregulated the expression of KSHV in BCBL-1 cells. overexpression upregulated the expression of the latency-associated gene, of KSHV in BCBL-1 cells, while knockdown of upregulated the expression of genes associated with the lytic reactivation of KSHV. Infection with the HIV-1 lentivirus, which overexpresses as well as manipulation of , significantly altered the cholesterol content in BCBL-1 cells.

Conclusion

The downregulation of by HIV-1 Tat modulates cellular cholesterol levels and is associated with KSHV replication in BCBL-1 cells.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X371221250630105858
2025-09-11
2025-10-18
Loading full text...

Full text loading...

References

  1. Sarabia I. Bosque A. HIV-1 latency and latency reversal: Does subtype matter? Viruses 2019 11 12 1104 10.3390/v11121104 31795223
    [Google Scholar]
  2. Li L. Dahiya S. Kortagere S. Impact of tat genetic variation on HIV-1 disease. Adv. Virol. 2012 2012 1 28 10.1155/2012/123605 22899925
    [Google Scholar]
  3. Madlala P. Mkhize Z. Naicker S. Genetic variation of the HIV-1 subtype C transmitted/founder viruses long terminal repeat elements and the impact on transcription activation potential and clinical disease outcomes. PLoS Pathog. 2023 19 6 e1011194 10.1371/journal.ppat.1011194 37307292
    [Google Scholar]
  4. Rana T.M. Jeang K.T. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch. Biochem. Biophys. 1999 365 2 175 185 10.1006/abbi.1999.1206 10328810
    [Google Scholar]
  5. Gu J. Babayeva N.D. Suwa Y. Baranovskiy A.G. Price D.H. Tahirov T.H. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 2014 13 11 1788 1797 10.4161/cc.28756 24727379
    [Google Scholar]
  6. Rayne F. Debaisieux S. Yezid H. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J. 2010 29 8 1348 1362 10.1038/emboj.2010.32 20224549
    [Google Scholar]
  7. Spector C. Mele A.R. Wigdahl B. Nonnemacher M.R. Genetic variation and function of the HIV-1 Tat protein. Med. Microbiol. Immunol. 2019 208 2 131 169 10.1007/s00430‑019‑00583‑z 30834965
    [Google Scholar]
  8. Bhaduri-McIntosh S. Human Herpesvirus-8. Pediatr. Infect. Dis. J. 2005 24 1 81 82 10.1097/01.inf.0000151367.14455.9c 15665715
    [Google Scholar]
  9. Tsao M.N. Sinclair E. Assaad D. Fialkov J. Antonyshyn O. Barnes E. Radiation therapy for the treatment of skin Kaposi sarcoma. Ann. Palliat. Med. 2016 5 4 298 302 10.21037/apm.2016.08.03 27701876
    [Google Scholar]
  10. Stürzl M. Zietz C. Monini P. Ensoli B. Human herpesvirus-8 and Kaposi’s sarcoma: Relationship with the multistep concept of tumorigenesis. Adv. Cancer Res. 2001 81 1 125 159 10.1016/S0065‑230X(01)81004‑6 11430594
    [Google Scholar]
  11. Cesarman E. Chang Y. Moore P.S. Said J.W. Knowles D.M. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 1995 332 18 1186 1191 10.1056/NEJM199505043321802 7700311
    [Google Scholar]
  12. Soulier J. Grollet L. Oksenhendler E. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 1995 86 4 1276 1280 10.1182/blood.V86.4.1276.bloodjournal8641276 7632932
    [Google Scholar]
  13. Rose T.M. Bruce A.G. Barcy S. Quantitative RNAseq analysis of Ugandan KS tumors reveals KSHV gene expression dominated by transcription from the LTd downstream latency promoter. PLoS Pathog. 2018 14 12 e1007441 10.1371/journal.ppat.1007441 30557332
    [Google Scholar]
  14. Bielefeldt-Ohmann H. Bruce A.G. Howard K. Ikoma M. Thouless M.E. Rose T.M. Macaque homologs of Kaposi’s sarcoma-associated herpesvirus (KSHV) infect germinal center lymphoid cells, epithelial cells in skin and gastrointestinal tract and gonadal germ cells in naturally infected macaques. Virology 2018 519 106 120 10.1016/j.virol.2018.04.007 29689462
    [Google Scholar]
  15. Dai L. Del Valle L. Miley W. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi’s sarcoma development. Oncogene 2018 37 33 4534 4545 10.1038/s41388‑018‑0282‑4 29743595
    [Google Scholar]
  16. Dittmer D.P. Damania B. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)-associated disease in the AIDS patient: An Update Cancer Treat Res 2019 177 63 80 10.1007/978‑3‑030‑03502‑0_3 30523621
    [Google Scholar]
  17. Li W. Wang Q. Feng Q. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS Pathog. 2019 15 1 e1007578 10.1371/journal.ppat.1007578 30699189
    [Google Scholar]
  18. Yan Q. Li W. Tang Q. Cellular microRNAs 498 and 320d regulate herpes simplex virus 1 induction of Kaposi’s sarcoma-associated herpesvirus lytic replication by targeting RTA. PLoS One 2013 8 2 e55832 10.1371/journal.pone.0055832 23418466
    [Google Scholar]
  19. Dourmishev L.A. Dourmishev A.L. Palmeri D. Schwartz R.A. Lukac D.M. Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 2003 67 2 175 212 10.1128/MMBR.67.2.175‑212.2003 12794189
    [Google Scholar]
  20. Chen L. Lagunoff M. Establishment and maintenance of Kaposi’s sarcoma-associated herpesvirus latency in B cells. J. Virol. 2005 79 22 14383 14391 10.1128/JVI.79.22.14383‑14391.2005 16254372
    [Google Scholar]
  21. Mesri E.A. Cesarman E. Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat. Rev. Cancer 2010 10 10 707 719 10.1038/nrc2888 20865011
    [Google Scholar]
  22. Ballestas M.E. Kaye K.M. The latency-associated nuclear antigen, a multifunctional protein central to Kaposi’s sarcoma-associated herpesvirus latency. Future Microbiol. 2011 6 12 1399 1413 10.2217/fmb.11.137 22122438
    [Google Scholar]
  23. Komanduri K.V. Luce J.A. McGrath M.S. Herndier B.G. Ng V.L. The natural history and molecular heterogeneity of HIV-associated primary malignant lymphomatous effusions. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1996 13 3 215 226 10.1097/00042560‑199611010‑00003 8898666
    [Google Scholar]
  24. Picchio G.R. Sabbe R.E. Gulizia R.J. McGrath M. Herndier B.G. Mosier D.E. The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology 1997 238 1 22 29 10.1006/viro.1997.8822 9375005
    [Google Scholar]
  25. Jenner R.G. Albà M.M. Boshoff C. Kellam P. Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol. 2001 75 2 891 902 10.1128/JVI.75.2.891‑902.2001 11134302
    [Google Scholar]
  26. Renne R. Zhong W. Herndier B. Lytic growth of Kaposi’s sarcoma–associated herpesvirus (human herpesvirus 8) in culture. Nat. Med. 1996 2 3 342 346 10.1038/nm0396‑342 8612236
    [Google Scholar]
  27. Nakajima K. Guevara-Plunkett S. Chuang F. Rainbow Kaposi’s sarcoma-associated herpesvirus revealed heterogenic replication with dynamic gene expression. J. Virol. 2020 94 8 e01565 e19 10.1128/JVI.01565‑19 31969436
    [Google Scholar]
  28. Campbell M. Watanabe T. Nakano K. KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation. Nat. Commun. 2018 9 1 49 51 10.1038/s41467‑017‑02089‑9 29302027
    [Google Scholar]
  29. Pica F. Serafino A. Divizia M. Effect of extremely low frequency electromagnetic fields (ELFEMF) on Kaposi’s sarcomaassociated herpes virus in BCBL1 cells. Bioelectromagnetics 2006 27 3 226 232 10.1002/bem.20198 16342195
    [Google Scholar]
  30. Yu Y. Black J.B. Goldsmith C.S. Browning P.J. Bhalla K. Offermann M.K. Induction of human herpesvirus-8 DNA replication and transcription by butyrate and TPA in BCBL-1 cells. J. Gen. Virol. 1999 80 1 83 90 10.1099/0022‑1317‑80‑1‑83 9934688
    [Google Scholar]
  31. D’Agostino G. Aricò E. Santodonato L. Type I consensus IFN (IFN-con1) gene transfer into KSHV/HHV-8-infected BCBL-1 cells causes inhibition of viral lytic cycle activation via induction of apoptosis and abrogates tumorigenicity in sCID mice. J. Interferon Cytokine Res. 1999 19 11 1305 1316 10.1089/107999099312984 10574624
    [Google Scholar]
  32. Ueda K. KSHV genome replication and maintenance in latency. Adv. Exp. Med. Biol. 2018 1045 299 320 10.1007/978‑981‑10‑7230‑7_14 29896673
    [Google Scholar]
  33. Park M.K. Cho H. Roh S.W. Kim S.J. Myoung J. Cell type-specific interferonmediated antagonism of KSHV lytic replication. Sci. Rep. 2019 9 1 2372 2378 10.1038/s41598‑019‑38870‑7 30787356
    [Google Scholar]
  34. Singh R.K. Lamplugh Z.L. Lang F. KSHV-encoded LANA protects the cellular replication machinery from hypoxia induced degradation. PLoS Pathog. 2019 15 9 e1008025 10.1371/journal.ppat.1008025 31479497
    [Google Scholar]
  35. Mortazavi Y. Lidenge S.J. Tran T. West J.T. Wood C. Tso F.Y. The kaposi’s sarcoma-associated herpesvirus (KSHV) gH/gL complex is the predominant neutralizing antigenic determinant in KSHV-infected individuals. Viruses 2020 12 3 256 263 10.3390/v12030256 32111001
    [Google Scholar]
  36. Nalwoga A. Nakibuule M. Marshall V. Risk factors for Kaposi’s sarcoma associated herpesvirus (KSHV) DNA in blood and in saliva in rural Uganda. Clin. Infect. Dis. 2020 71 4 1055 1062 10.1093/cid/ciz916 31555829
    [Google Scholar]
  37. Sharma N.R. Majerciak V. Kruhlak M.J. KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Nucleic Acids Res. 2019 47 17 9368 9385 10.1093/nar/gkz683 31400113
    [Google Scholar]
  38. Gorres K.L. Daigle D. Mohanram S. Miller G. Activation and repression of epstein-barr virus and kaposi’s sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J. Virol. 2014 88 14 8028 8044 10.1128/JVI.00722‑14 24807711
    [Google Scholar]
  39. Baghian A. Luftig M. Black J.B. Glycoprotein B of human herpesvirus 8 is a component of the virion in a cleaved form composed of amino- and carboxyl-terminal fragments. Virology 2000 269 1 18 25 10.1006/viro.2000.0198 10725194
    [Google Scholar]
  40. Gonnella R. Yadav S. Gilardini Montani M.S. Oxidant species are involved in T/B-mediated ERK1/2 phosphorylation that activates p53-p21 axis to promote KSHV lytic cycle in PEL cells. Free Radic. Biol. Med. 2017 112 327 335 10.1016/j.freeradbiomed.2017.08.005 28801242
    [Google Scholar]
  41. Wakao K. Watanabe T. Takadama T. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells. Biochem. Biophys. Res. Commun. 2014 444 2 135 140 10.1016/j.bbrc.2014.01.017 24434142
    [Google Scholar]
  42. Santarelli R. Carillo V. Romeo M.A. STAT3 phosphorylation affects p53/p21 axis and KSHV lytic cycle activation. Virology 2019 528 137 143 10.1016/j.virol.2018.12.015 30616203
    [Google Scholar]
  43. Majerciak V. Pripuzova N. McCoy J.P. Gao S.J. Zheng Z.M. Targeted disruption of Kaposi’s sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J. Virol. 2007 81 3 1062 1071 10.1128/JVI.01558‑06 17108026
    [Google Scholar]
  44. Ohtsuki Y. Iwata J. Furihata M. Ultrastructure of Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 (HHV-8) in a primary effusion lymphoma cell line treated with tetradecanoyl phorbol acetate (TPA). Med. Electron Microsc. 1999 32 2 94 99 10.1007/s007950050014 11810431
    [Google Scholar]
  45. Tang Q. Qin D. Lv Z. Herpes simplex virus type 2 triggers reactivation of Kaposi’s sarcoma-associated herpesvirus from latency and collaborates with HIV-1 Tat. PLoS One 2012 7 2 e31652 10.1371/journal.pone.0031652 22347501
    [Google Scholar]
  46. Zhou F. Xue M. Qin D. HIV-1 Tat promotes Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3signaling pathway. PLoS One 2013 8 1 e53145 10.1371/journal.pone.0053145 23301033
    [Google Scholar]
  47. Roupelieva M. Griffiths S.J. Kremmer E. Kaposi’s sarcoma-associated herpesvirus Lana-1 is a major activator of the serum response element and mitogen-activated protein kinase pathways via interactions with the Mediator complex. J. Gen. Virol. 2010 91 5 1138 1149 10.1099/vir.0.017715‑0 20089804
    [Google Scholar]
  48. Blauvelt A. Skin diseases associated with human herpesvirus 6, 7, and 8 infection. J. Investig. Dermatol. Symp. Proc. 2001 6 3 197 202 10.1046/j.0022‑202x.2001.00040.x 11924827
    [Google Scholar]
  49. Chen Y. Zhao L. Screening of host cell methylation genesinvolved in reactivation of KSHVreplication by HIV-1 Tat protein Youjiang Medicine University for Nationalities 2020
    [Google Scholar]
  50. Chen X. Yi X. Lu F. Yi Z. Construction of recombinant lentiviral vectors carrying FDFTlgenes and its expression determination. Youjiang Medicine University for Nationalities 2021.
    [Google Scholar]
  51. Kadkhodayan S. Jafarzade B.S. Sadat S.M. Motevalli F. Agi E. Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol. Lett. 2017 188 38 45 10.1016/j.imlet.2017.06.003 28602843
    [Google Scholar]
  52. Liu Y. Li F. Qi Z. The effects of HIV Tat DNA on regulating the immune response of HIV DNA vaccine in mice. Virol. J. 2013 10 1 297 10.1186/1743‑422X‑10‑297 24073803
    [Google Scholar]
  53. Qin Z. Zhao P. Zhang X. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem. Biophys. Res. Commun. 2004 324 4 1186 1193 10.1016/j.bbrc.2004.09.180 15504339
    [Google Scholar]
  54. Hu J. Han J. Li H. Human embryonic kidney 293 cells: A vehicle for biopharmaceutical manufacturing, structural biology, andelectrophysiology state of the art and future perspectives. Cells Tissues Organs 2018 205 1 1 8 10.1159/000485501 29393161
    [Google Scholar]
  55. Sadeghi L. Bolhassani A. Mohit E. Baesi K. Aghasadeghi M.R. Heterologous DNA prime/protein boost immunization targeting nef-tat fusion antigen induces potent T-cell activity and in vitro anti-SCR HIV-1 effects. Curr. HIV Res. 2024 22 2 109 119 10.2174/011570162X297602240430142231 38712371
    [Google Scholar]
  56. Dai J. Wang H. Liao Y. Coronavirus infection and cholesterol metabolism. Front. Immunol. 2022 13 791267 10.3389/fimmu.2022.791267 35529872
    [Google Scholar]
  57. González-Aldaco K. Torres-Reyes L.A. Ojeda-Granados C. José-Ábrego A. Fierro N.A. Román S. Immunometabolic effect of cholesterol in hepatitis c infection: Implications in clinical management and antiviral therapy. Ann. Hepatol. 2018 17 6 908 919 10.5604/01.3001.0012.7191 30600305
    [Google Scholar]
  58. Liang Y.J. Chiou Y.W. Chiu A.P.T. Antiviral therapy reduces hepatocellular carcinoma through suppressing hepatitis B virus replication may improve ER stress, mitochondrial and metabolic dysfunctions and decrease p62 in hybridized mice with single HBV transgene and miR122. J. Med. Virol. 2023 95 12 e29325 10.1002/jmv.29325 38108211
    [Google Scholar]
  59. Mao S. Ren J. Xu Y. Studies in the antiviral molecular mechanisms of 25-hydroxycholesterol: Disturbing cholesterol homeostasis and post-translational modification of proteins. Eur. J. Pharmacol. 2022 926 175033 10.1016/j.ejphar.2022.175033 35598845
    [Google Scholar]
  60. Rojas-Cruz A.F. Martín-Jiménez C.A. González J. Palmitic acid upregulates type I interferon–mediated antiviral response and cholesterol biosynthesis in human astrocytes. Mol. Neurobiol. 2023 60 8 4842 4854 10.1007/s12035‑023‑03366‑z 37184765
    [Google Scholar]
  61. Wing P.A.C. Schmidt N.M. Peters R. An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity. PLoS Pathog. 2023 19 5 e1011323 10.1371/journal.ppat.1011323 37134108
    [Google Scholar]
  62. Zhang J. Zhu Y. Wang X. Wang J. 25-hydroxycholesterol: An integrator of antiviral ability and signaling. Front. Immunol. 2023 14 1268104 10.3389/fimmu.2023.1268104 37781400
    [Google Scholar]
  63. Sanchez L.D. Pontini L. Marinozzi M. Sanchez-Aranguren L.C. Reis A. Dias I.H.K. Cholesterol and oxysterol sulfates: Pathophysiological roles and analytical challenges. Br. J. Pharmacol. 2021 178 16 3327 3341 10.1111/bph.15227 32762060
    [Google Scholar]
  64. Sviridov D. Mukhamedova N. Miller Y.I. Lipid rafts as a therapeutic target. J. Lipid Res. 2020 61 5 687 695 10.1194/jlr.TR120000658 32205411
    [Google Scholar]
  65. Moutinho M. Nunes M.J. Rodrigues E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016 1861 12 1911 1920 10.1016/j.bbalip.2016.09.011 27663182
    [Google Scholar]
  66. Vurusaner B. Leonarduzzi G. Gamba P. Poli G. Basaga H. Oxysterols and mechanisms of survival signaling. Mol. Aspects Med. 2016 49 8 22 10.1016/j.mam.2016.02.004 27017897
    [Google Scholar]
  67. Cyster J.G. Dang E.V. Reboldi A. Yi T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 2014 14 11 731 743 10.1038/nri3755 25324126
    [Google Scholar]
  68. Cao Q. Liu Z. Xiong Y. Zhong Z. Ye Q. Multiple roles of 25-hydroxycholesterol in lipid metabolism, antivirus process, inflammatory response, and cell survival. Oxid. Med. Cell. Longev. 2020 2020 1 11 10.1155/2020/8893305 33274010
    [Google Scholar]
  69. Wang Y. Zhang J. Chen J. Ch25h and 25-HC prevent liver steatosis through regulation of cholesterol metabolism and inflammation. Acta Biochim. Biophys. Sin. 2022 54 4 504 513 10.3724/abbs.2022030 35462473
    [Google Scholar]
  70. Yuan S. Chan C.C.Y. Chik K.K.H. Broad-spectrum host-based antivirals targeting the interferon and lipogenesis pathways as potential treatment options for the pandemic coronavirus disease 2019 (COVID-19). Viruses 2020 12 6 628 10.3390/v12060628 32532085
    [Google Scholar]
  71. Shawli G.T. Adeyemi O.O. Stonehouse N.J. Herod M.R. The oxysterol 25-hydroxycholesterol inhibits replication of murine norovirus. Viruses 2019 11 2 97 113 10.3390/v11020097 30682775
    [Google Scholar]
  72. Serquiña A.K.P. Tagawa T. Oh D. Mahesh G. Ziegelbauer J.M. 25-hydroxycholesterol inhibits kaposi’s sarcoma herpesvirus and epstein-barr virus infections and activates inflammatory cytokine responses. MBio 2021 12 6 e02907 e02921 10.1128/mBio.02907‑21 34781692
    [Google Scholar]
  73. Ali A. Mishra R. Kaur H. Banerjea C.A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021 190 24 35 10.1016/j.biochi.2021.07.001 34242726
    [Google Scholar]
  74. Chiozzini C. Toschi E. HIV-1 tat and immune dysregulation in aids pathogenesis: A therapeutic target. Curr. Drug Targets 2015 17 1 33 45 10.2174/1389450116666150825110658 26302810
    [Google Scholar]
  75. Clark E. Nava B. Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 2017 8 16 27569 27581 10.18632/oncotarget.15174 28187438
    [Google Scholar]
  76. He Z.X. Wei B.F. Zhang X. Gong Y.P. Ma L.Y. Zhao W. Current development of CBP/p300 inhibitors in the last decade. Eur. J. Med. Chem. 2021 209 112861 10.1016/j.ejmech.2020.112861 33045661
    [Google Scholar]
  77. Deng L. Wang D. de la Fuente C. Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology 2001 289 2 312 326 10.1006/viro.2001.1129 11689053
    [Google Scholar]
  78. Raha T. Cheng S.W.G. Green M.R. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol. 2005 3 2 e44 10.1371/journal.pbio.0030044 15719058
    [Google Scholar]
  79. Easley R. Van Duyne R. Coley W. Chromatin dynamics associated with HIV-1 Tat-activated transcription. Biochim. Biophys. Acta. Gene Regul. Mech. 2010 1799 3-4 275 285 10.1016/j.bbagrm.2009.08.008 19716452
    [Google Scholar]
  80. El-Amine R. Germini D. Zakharova V.V. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol. 2018 15 97 108 10.1016/j.redox.2017.11.024 29220699
    [Google Scholar]
  81. Neill O. How low cholesterol is good for anti-viral immunity. Cell 2015 163 7 1572 1574 10.1016/j.cell.2015.12.004 26687349
    [Google Scholar]
  82. York A.G. Williams K.J. Argus J.P. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 2015 163 7 1716 1729 10.1016/j.cell.2015.11.045 26686653
    [Google Scholar]
  83. Angius F. Ingianni A. Pompei R. Human herpesvirus 8 and host-cell interaction: Long-lasting physiological modifications, inflammation and related chronic diseases. Microorganisms 2020 8 3 388 10.3390/microorganisms8030388 32168836
    [Google Scholar]
  84. Angius F. Uda S. Piras E. Neutral lipid alterations in Human Herpesvirus 8-infected HUVEC cells and their possible involvement in neo-angiogenesis. BMC Microbiol. 2015 15 1 74 10.1186/s12866‑015‑0415‑7 25887745
    [Google Scholar]
  85. Incani A. Marras L. Serreli G. Human Herpesvirus 8 infection may contribute to oxidative stress in diabetes type 2 patients. BMC Res. Notes 2020 13 1 75 10.1186/s13104‑020‑4935‑3 32054515
    [Google Scholar]
  86. Santarelli R. Pompili C. Gilardini Montani M.S. Lovastatin reduces PEL cell survival by phosphorylating ERK1 /2 that blocks the autophagic flux and engages a crosstalk with p53 to activate p21. IUBMB Life 2021 73 7 968 977 10.1002/iub.2503 33987937
    [Google Scholar]
  87. Serquiña A.K.P. Kambach D.M. Sarker O. Ziegelbauer J.M. Viral MicroRNAs repress the cholesterol pathway, and 25-hydroxycholesterol inhibits infection. MBio 2017 8 4 e00576 e17 10.1128/mBio.00576‑17 28698273
    [Google Scholar]
/content/journals/chr/10.2174/011570162X371221250630105858
Loading
/content/journals/chr/10.2174/011570162X371221250630105858
Loading

Data & Media loading...

Supplements

The supplementary material is available on the publisher’s website alongside the published article.


  • Article Type:
    Research Article
Keywords: FDFT1 ; replication cycle ; HIV-1 ; tat protein ; KSHV ; cellular cholesterol content
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test