Skip to content
2000
image of Visualizing and Analyzing Global Trends and Frontier Research in HIV Reservoirs: A Bibliometric Study from 1994 to 2023

Abstract

Introduction

The enduring presence of HIV reservoirs represents an important obstacle to clinical management. Extensive research has been conducted in this field, but there are no bibliometric analyses focusing on HIV reservoir research. Aim: This study aimed to present the current status and global trends in HIV reservoir research through bibliometric analysis.

Methods

Studies on HIV reservoirs published from 1 January 1994 to 31 December 2023 were included in the Web of Science Core Collection database, and annual publication numbers, institutions, countries, and authors were analysed using CiteSpace bibliometric software. Furthermore, popular research topics and trends were analysed using co-cited references and keywords. From 1994 to 2023, 5778 publications on HIV reservoirs were included, with the United States producing the most publications, citations, and research funding. The most productive individual author was Nicolas Chomont. Cell was the journal publishing the most publications, while Nat Med had the best total link strength. The University of California System was the institution that made the greatest contribution. Keyword clustering analysis of the extracted publications indicated that the research areas over the past three decades have primarily focused on “central nervous system,” “histone deacetylase,” “multiple Epstein‒Barr virus infection,” and “dendritic cell.”

Results

Moreover, keyword emergence analysis indicates that “provirus” and “identification” are likely to become central themes in future research. Future investigations should prioritize elucidating the specific mechanisms underlying proviral persistence and the identification of novel biomarkers in HIV reservoirs. Additionally, exploring the role of proviral dynamics in therapeutic development and reservoir targeting could offer new insights into potential treatment strategies.

Conclusion

This study makes a significant contribution to the understanding of HIV reservoirs, shedding light on key characteristics and emerging trends while also pointing to future research directions.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X360028250418095855
2025-05-02
2025-10-29
Loading full text...

Full text loading...

References

  1. United Nations Programme on HIV/AIDS. The Urgency of Now: AIDS at a Crossroads. 2024
    [Google Scholar]
  2. Cabrera-Rodríguez R. Pérez-Yanes S. Estévez-Herrera J. Márquez-Arce D. Cabrera C. Espert L. Blanco J. Valenzuela-Fernández A. The interplay of HIV and autophagy in early infection. Front. Microbiol. 2021 12 661446 10.3389/fmicb.2021.661446 33995324
    [Google Scholar]
  3. Robbins H.A. Shiels M.S. Pfeiffer R.M. Engels E.A. Epidemiologic contributions to recent cancer trends among HIV-infected people in the United States. AIDS 2014 28 6 881 890 10.1097/QAD.0000000000000163 24300545
    [Google Scholar]
  4. Sutton L. Guénel P. Tanguy M.L. Rio B. Dhedin N. Casassus P. Lortholary O. Acute myeloid leukaemia in human immunodeficiency virus‐infected adults: Epidemiology, treatment feasibility and outcome. Br. J. Haematol. 2001 112 4 900 908 10.1046/j.1365‑2141.2001.02661.x 11298584
    [Google Scholar]
  5. Sorokina A. Anchakova E. Dashinimaev E. Strategies for HIV-1 suppression through key genes and cell therapy. Front. Med. 2023 10 1259995 10.3389/fmed.2023.1259995 38093984
    [Google Scholar]
  6. García F. Plana M. Vidal C. Cruceta A. O’Brien W.A. Pantaleo G. Pumarola T. Gallart T. Miró J.M. Gatell J.M. Dynamics of viral load rebound and immunological changes after stopping effective antiretroviral therapy. AIDS 1999 13 11 F79 F86 10.1097/00002030‑199907300‑00002 10449278
    [Google Scholar]
  7. Zyl V.G. Bale M.J. Kearney M.F. HIV evolution and diversity in ART-treated patients. Retrovirology 2018 15 1 14 10.1186/s12977‑018‑0395‑4 29378595
    [Google Scholar]
  8. Bruner K.M. Wang Z. Simonetti F.R. Bender A.M. Kwon K.J. Sengupta S. Fray E.J. Beg S.A. Antar A.A.R. Jenike K.M. Bertagnolli L.N. Capoferri A.A. Kufera J.T. Timmons A. Nobles C. Gregg J. Wada N. Ho Y.C. Zhang H. Margolick J.B. Blankson J.N. Deeks S.G. Bushman F.D. Siliciano J.D. Laird G.M. Siliciano R.F. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 2019 566 7742 120 125 10.1038/s41586‑019‑0898‑8 30700913
    [Google Scholar]
  9. Goujard C. Bonarek M. Meyer L. Bonnet F. Chaix M.L. Deveau C. Sinet M. Galimand J. Delfraissy J.F. Venet A. Rouzioux C. Morlat P. CD4 cell count and HIV DNA level are independent predictors of disease progression after primary HIV type 1 infection in untreated patients. Clin. Infect. Dis. 2006 42 5 709 715 10.1086/500213 16447119
    [Google Scholar]
  10. Williams J.P. Hurst J. Stöhr W. Robinson N. Brown H. Fisher M. Kinloch S. Cooper D. Schechter M. Tambussi G. Fidler S. Carrington M. Babiker A. Weber J. Koelsch K.K. Kelleher A.D. Phillips R.E. Frater J. HIV-1 DNA predicts disease progression and post-treatment virological control. eLife 2014 3 e03821 10.7554/eLife.03821 25217531
    [Google Scholar]
  11. Ninkov A. Frank J.R. Maggio L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2021 11 3 173 176 10.1007/S40037‑021‑00695‑4 34914027
    [Google Scholar]
  12. Chen C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. U S A. 2004 Suppl 1 Suppl 1 5303 5310 10.1073/pnas.0307513100
    [Google Scholar]
  13. Sood S.K. Rawat K.S. Kumar D. Analytical mapping of information and communication technology in emerging infectious diseases using CiteSpace. Telemat. Inform. 2022 69 101796 10.1016/j.tele.2022.101796 35282387
    [Google Scholar]
  14. Wang N. Zhang R. Ye Z. Lan G. Zhu Q. Chen H. Zhang X. Tan S. Ruan Y. Lin M. Studies on HIV/AIDS among students: Bibliometric analysis. Interact. J. Med. Res. 2023 12 e46042 10.2196/46042 37540553
    [Google Scholar]
  15. Brandes U. A faster algorithm for betweenness centrality*. J. Math. Sociol. 2001 25 2 163 177 10.1080/0022250X.2001.9990249
    [Google Scholar]
  16. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006 57 3 359 377 10.1002/asi.20317
    [Google Scholar]
  17. Kleinberg J. Bursty and hierarchical structure in streams Data Min. Knowl. Disc. 2002 7 4 91 101 10.1145/775047.775061
    [Google Scholar]
  18. Archin N.M. Liberty A.L. Kashuba A.D. Choudhary S.K. Kuruc J.D. Crooks A.M. Parker D.C. Anderson E.M. Kearney M.F. Strain M.C. Richman D.D. Hudgens M.G. Bosch R.J. Coffin J.M. Eron J.J. Hazuda D.J. Margolis D.M. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012 487 7408 482 485 10.1038/nature11286 22837004
    [Google Scholar]
  19. Newman M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006 103 23 8577 8582 10.1073/pnas.0601602103 16723398
    [Google Scholar]
  20. Rousseeuw P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987 20 53 65 10.1016/0377‑0427(87)90125‑7
    [Google Scholar]
  21. Honeycutt J.B. Liao B. Nixon C.C. Cleary R.A. Thayer W.O. Birath S.L. Swanson M.D. Sheridan P. Zakharova O. Prince F. Kuruc J. Gay C.L. Evans C. Eron J.J. Wahl A. Garcia J.V. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J. Clin. Invest. 2018 128 7 2862 2876 10.1172/JCI98968 29863499
    [Google Scholar]
  22. Rebound virus in the cerebrospinal fluid reveals a possible HIV-1 reservoir. Nat. Microbiol. 2023 8 2 195 196 36717720
    [Google Scholar]
  23. Chan P. Hellmuth J. Spudich S. Valcour V. Cognitive impairment and persistent cns injury in treated HIV. Curr. HIV/AIDS Rep. 2016 13 4 209 217 10.1007/s11904‑016‑0319‑7 27188299
    [Google Scholar]
  24. Tang Y. Chaillon A. Gianella S. Wong L.M. Li D. Simermeyer T.L. Porrachia M. Ignacio C. Woodworth B. Zhong D. Du J. Polina D.L.P.E. Kirchherr J. Allard B. Clohosey M.L. Moeser M. Sondgeroth A.L. Whitehill G.D. Singh V. Dashti A. Smith D.M. Eron J.J. Bar K.J. Chahroudi A. Joseph S.B. Archin N.M. Margolis D.M. Jiang G. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J. Clin. Invest. 2023 133 12 e167417 10.1172/JCI167417 37317962
    [Google Scholar]
  25. Margolis D.M. Histone deacetylase inhibitors and HIV latency. Curr. Opin. HIV AIDS 2011 6 1 25 29 10.1097/COH.0b013e328341242d 21242890
    [Google Scholar]
  26. Coull J.J. Romerio F. Sun J.M. Volker J.L. Galvin K.M. Davie J.R. Shi Y. Hansen U. Margolis D.M. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J. Virol. 2000 74 15 6790 6799 10.1128/JVI.74.15.6790‑6799.2000 10888618
    [Google Scholar]
  27. Margolis D.M. Mechanisms of HIV latency: An emerging picture of complexity. Curr. HIV/AIDS Rep. 2010 7 1 37 43 10.1007/s11904‑009‑0033‑9 20425056
    [Google Scholar]
  28. Williams S.A. Chen L.F. Kwon H. Ruiz-Jarabo C.M. Verdin E. Greene W.C. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J. 2006 25 1 139 149 10.1038/sj.emboj.7600900 16319923
    [Google Scholar]
  29. Benkirane M. Chun R.F. Xiao H. Ogryzko V.V. Howard B.H. Nakatani Y. Jeang K.T. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J. Biol. Chem. 1998 273 38 24898 24905 10.1074/jbc.273.38.24898 9733796
    [Google Scholar]
  30. Dolcetti R. B lymphocytes and Epstein–Barr virus: The lesson of post-transplant lymphoproliferative disorders. Autoimmun. Rev. 2007 7 2 96 101 10.1016/j.autrev.2007.02.012 18035317
    [Google Scholar]
  31. Olszewski A.J. Fallah J. Castillo J.J. Human immunodeficiency virus‐associated lymphomas in the antiretroviral therapy era: Analysis of the National Cancer Data Base. Cancer 2016 122 17 2689 2697 10.1002/cncr.30112 27337679
    [Google Scholar]
  32. Linke-Serinsöz E. Fend F. Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin. Diagn. Pathol. 2017 34 4 352 363 10.1053/j.semdp.2017.04.003 28506687
    [Google Scholar]
  33. Yao Q.Y. Tierney R.J. Croom-Carter D. Dukers D. Cooper G.M. Ellis C.J. Rowe M. Rickinson A.B. Frequency of multiple Epstein-Barr virus infections in T-cell-immunocompromised individuals. J. Virol. 1996 70 8 4884 4894 10.1128/jvi.70.8.4884‑4894.1996 8763991
    [Google Scholar]
  34. Grogg K.L. Miller R.F. Dogan A. HIV infection and lymphoma. J. Clin. Pathol. 2007 60 12 1365 1372 10.1136/jcp.2007.051953 18042692
    [Google Scholar]
  35. Laurence J. Astrin S.M. Human immunodeficiency virus induction of malignant transformation in human B lymphocytes. Proc. Natl. Acad. Sci. USA 1991 88 17 7635 7639 10.1073/pnas.88.17.7635 1652756
    [Google Scholar]
  36. Grossman Z. Meier-Schellersheim M. Sousa A.E. Victorino R.M.M. Paul W.E. CD4+ T-cell depletion in HIV infection: Are we closer to understanding the cause? Nat. Med. 2002 8 4 319 323 10.1038/nm0402‑319 11927927
    [Google Scholar]
  37. Martín-Moreno A. Muñoz-Fernández M.A. Dendritic cells, the double agent in the war against HIV-1. Front. Immunol. 2019 10 2485 10.3389/fimmu.2019.02485 31708924
    [Google Scholar]
  38. Merad M. Manz M.G. Dendritic cell homeostasis. Blood 2009 113 15 3418 3427 10.1182/blood‑2008‑12‑180646 19176316
    [Google Scholar]
  39. Coleman C.M. Wu L. HIV interactions with monocytes and dendritic cells: Viral latency and reservoirs. Retrovirology 2009 6 1 51 10.1186/1742‑4690‑6‑51 19486514
    [Google Scholar]
  40. Janas A.M. Dong C. Wang J.H. Wu L. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry. Virology 2008 375 2 442 451 10.1016/j.virol.2008.01.044 18329684
    [Google Scholar]
  41. Garcia E. Nikolic D.S. Piguet V. HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 2008 9 2 200 214 10.1111/j.1600‑0854.2007.00678.x 18034776
    [Google Scholar]
  42. Burton G. Keele B.F. Estes J.D. Thacker T.C. Gartner S. Follicular dendritic cell contributions to HIV pathogenesis. Semin. Immunol. 2002 14 4 275 284 10.1016/S1044‑5323(02)00060‑X 12163303
    [Google Scholar]
  43. Smith B.A. Gartner S. Liu Y. Perelson A.S. Stilianakis N.I. Keele B.F. Kerkering T.M. Ferreira-Gonzalez A. Szakal A.K. Tew J.G. Burton G.F. Persistence of infectious HIV on follicular dendritic cells. J. Immunol. 2001 166 1 690 696 10.4049/jimmunol.166.1.690 11123354
    [Google Scholar]
  44. Hammer S.M. Eron J.J. Jr Reiss P. Schooley R.T. Thompson M.A. Walmsley S. Cahn P. Fischl M.A. Gatell J.M. Hirsch M.S. Jacobsen D.M. Montaner J.S.G. Richman D.D. Yeni P.G. Volberding P.A. Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel. JAMA 2008 300 5 555 570 10.1001/jama.300.5.555 18677028
    [Google Scholar]
  45. Santoro M.M. Fabeni L. Armenia D. Alteri C. Pinto D.D. Forbici F. Bertoli A. Carlo D.D. Gori C. Carta S. Fedele V. D’Arrigo R. Berno G. Ammassari A. Pinnetti C. Nicastri E. Latini A. Tommasi C. Boumis E. Petrosillo N. D’Offizi G. Andreoni M. Ceccherini-Silberstein F. Antinori A. Perno C.F. Reliability and clinical relevance of the HIV-1 drug resistance test in patients with low viremia levels. Clin. Infect. Dis. 2014 58 8 1156 1164 10.1093/cid/ciu020 24429430
    [Google Scholar]
  46. Li Q. Chen M. Zhao H. Yu F. Yan L. Xiao J. Gao G. Yang D. Zhang F. Persistent low-level viremia is an independent risk factor for virologic failure: A retrospective cohort study in china. Infect. Drug Resist. 2021 14 4529 4537 10.2147/IDR.S332924 34754201
    [Google Scholar]
  47. Ioannidis J.P.A. Abrams E.J. Ammann A. Bulterys M. Goedert J.J. Gray L. Korber B.T. Mayaux M.J. Mofenson L.M. Newell M.L. Shapiro D.E. Teglas J.P. Wilfert C.M. Perinatal transmission of human immunodeficiency virus type 1 by pregnant women with RNA virus loads <1000 copies/ml. J. Infect. Dis. 2001 183 4 539 545 10.1086/318530 11170978
    [Google Scholar]
  48. Cohen J. Bound for Glory. Science 2013 341 6151 1168 1171 10.1126/science.341.6151.1168 24030996
    [Google Scholar]
  49. Simek M.D. Rida W. Priddy F.H. Pung P. Carrow E. Laufer D.S. Lehrman J.K. Boaz M. Tarragona-Fiol T. Miiro G. Birungi J. Pozniak A. McPhee D.A. Manigart O. Karita E. Inwoley A. Jaoko W. DeHovitz J. Bekker L.G. Pitisuttithum P. Paris R. Walker L.M. Poignard P. Wrin T. Fast P.E. Burton D.R. Koff W.C. Human immunodeficiency virus type 1 elite neutralizers: Individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 2009 83 14 7337 7348 10.1128/JVI.00110‑09 19439467
    [Google Scholar]
  50. Ananworanich J. McSteen B. Robb M.L. Broadly neutralizing antibody and the HIV reservoir in acute HIV infection. Curr. Opin. HIV AIDS 2015 10 3 198 206 10.1097/COH.0000000000000144 25700203
    [Google Scholar]
  51. Wang Q. Zhang S. Nguyen H.T. Sodroski J. Inhibition of human immunodeficiency virus (HIV-1) infectivity by expression of poorly or broadly neutralizing antibodies against Env in virus-producing cells. J. Virol. 2024 98 2 e01594-23 10.1128/jvi.01594‑23 38289101
    [Google Scholar]
  52. Zhu W. Jiao Y. Lei R. Hua W. Wang R. Ji Y. Liu Z. Wei F. Zhang T. Shi X. Wu H. Zhang L. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy. PLoS One 2011 6 6 e21081 10.1371/journal.pone.0021081 21687638
    [Google Scholar]
  53. Siliciano J.D. Kajdas J. Finzi D. Quinn T.C. Chadwick K. Margolick J.B. Kovacs C. Gange S.J. Siliciano R.F. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 2003 9 6 727 728 10.1038/nm880 12754504
    [Google Scholar]
  54. Trémeaux P. Lenfant T. Boufassa F. Essat A. Mélard A. Gousset M. Delelis O. Viard J.P. Bary M. Goujard C. Rouzioux C. Meyer L. Avettand-Fenoel V. Increasing contribution of integrated forms to total HIV DNA in blood during HIV disease progression from primary infection. EBioMedicine 2019 41 455 464 10.1016/j.ebiom.2019.02.016 30803934
    [Google Scholar]
  55. Siliciano J.D. Siliciano R.F. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol. Biol. 2005 304 003 016 10.1385/1‑59259‑907‑9:003 16061962
    [Google Scholar]
  56. Pollack R.A. Jones R.B. Pertea M. Bruner K.M. Martin A.R. Thomas A.S. Capoferri A.A. Beg S.A. Huang S.H. Karandish S. Hao H. Halper-Stromberg E. Yong P.C. Kovacs C. Benko E. Siliciano R.F. Ho Y.C. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic t lymphocytes, which shape the proviral landscape. Cell Host Microbe 2017 21 4 494 506.e4 10.1016/j.chom.2017.03.008 28407485
    [Google Scholar]
  57. Ho Y.C. Shan L. Hosmane N.N. Wang J. Laskey S.B. Rosenbloom D.I.S. Lai J. Blankson J.N. Siliciano J.D. Siliciano R.F. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013 155 3 540 551 10.1016/j.cell.2013.09.020 24243014
    [Google Scholar]
  58. Gay C.L. Hanley P.J. Falcinelli S.D. Kuruc J.D. Pedersen S.M. Kirchherr J. Raines S.L.M. Motta C.M. Lazarski C. Chansky P. Tanna J. Shibli A. Datar A. McCann C.D. Sili U. Ke R. Eron J.J. Archin N. Goonetilleke N. Bollard C.M. Margolis D.M. The effects of human immunodeficiency virus type 1 (HIV-1) antigen-expanded specific t-cell therapy and vorinostat on persistent HIV-1 infection in people with HIV on antiretroviral therapy. J. Infect. Dis. 2024 229 3 743 752 10.1093/infdis/jiad423 38349333
    [Google Scholar]
  59. Henrich T.J. Hobbs K.S. Hanhauser E. Scully E. Hogan L.E. Robles Y.P. Leadabrand K.S. Marty F.M. Palmer C.D. Jost S. Körner C. Li J.Z. Gandhi R.T. Hamdan A. Abramson J. LaCasce A.S. Kuritzkes D.R. Human immunodeficiency virus type 1 persistence following systemic chemotherapy for malignancy. J. Infect. Dis. 2017 216 2 254 262 10.1093/infdis/jix265 28838149
    [Google Scholar]
  60. Laeremans T. Autologous dendritic cell vaccination against HIV-1 induces changes in natural killer cell phenotype and functionality. npj. Vaccines 2023 8 1 29 38250842
    [Google Scholar]
  61. Singh K. Natarajan V. Dewar R. Rupert A. Badralmaa Y. Zhai T. Winchester N. Scrimieri F. Smith M. Davis I. Lallemand P. Giglietti A. Hensien J. Buerkert T. Goshu B. Rehm C.A. Hu Z. Lane H.C. Imamichi H. Long-term persistence of transcriptionally active ‘defective’ HIV-1 proviruses: Implications for persistent immune activation during antiretroviral therapy. AIDS 2023 37 14 2119 2130 10.1097/QAD.0000000000003667 37555786
    [Google Scholar]
  62. Bruner K.M. Murray A.J. Pollack R.A. Soliman M.G. Laskey S.B. Capoferri A.A. Lai J. Strain M.C. Lada S.M. Hoh R. Ho Y.C. Richman D.D. Deeks S.G. Siliciano J.D. Siliciano R.F. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 2016 22 9 1043 1049 10.1038/nm.4156 27500724
    [Google Scholar]
  63. Gupta A. Lam B.D. Zerbey S. Rosovsky R.P. Lake L. Dodge L. Adamski A. Reyes N. Abe K. Vlachos I. Zwicker J.I. Schonberg M.A. Patell R. Artificial intelligence meets venous thromboembolism: Informaticians’ insights on diagnosis, prevention, and management. Blood Vessels, Thromb. Hemost. 2024 1 4 100031 10.1016/j.bvth.2024.100031 39868029
    [Google Scholar]
  64. Jumreornvong O. Chang D. Galdo G.P. Yong J. Jotwani R. Artificial intelligence assisted virtual reality training module for Gasserian ganglion block. Interventional Pain Med. 2025 4 1 100536 10.1016/j.inpm.2024.100536 39867296
    [Google Scholar]
  65. Jung I.C. Schuler K. Zerlik M. Grummt S. Sedlmayr M. Sedlmayr B. Overview of basic design recommendations for user-centered explanation interfaces for AI-based clinical decision support systems: A scoping review. Digit. Health 2025 11 20552076241308298 10.1177/20552076241308298 39866885
    [Google Scholar]
  66. Leiva-Escobar I. Cortes C.P. Lamadrid A. Employment status and HIV viral load in chilean adult population: A propensity score analysis. AIDS Behav. 2025 1 9 10.1007/s10461‑024‑04600‑y 39779625
    [Google Scholar]
  67. Thandla S.R. Armstrong G.Q. Menon A. Shah A. Gueye D.L. Harb C. Hernandez E. Iyer Y. Hotchner A.R. Modi R. Mudigonda A. Prokos M.A. Rao T.M. Thomas O.R. Beltran C.A. Guerrieri T. LeBlanc S. Moorthy S. Yacoub S.G. Gardner J.E. Greenberg B.M. Hubal A. Lapina Y.P. Moran J. O’Brien J.P. Winnicki A.C. Yoka C. Zhang J. Zimmerman P.A. Comparing new tools of artificial intelligence to the authentic intelligence of our global health students. BioData Min. 2024 17 1 58 10.1186/s13040‑024‑00408‑7 39696442
    [Google Scholar]
  68. Ji X. Tang Z. Osborne S.R. Nguyen V.T.P. Mullens A.B. Dean J.A. Li Y. STI/HIV risk prediction model development—A novel use of public data to forecast STIs/HIV risk for men who have sex with men. Front. Public Health 2025 12 1511689 10.3389/fpubh.2024.1511689 39830177
    [Google Scholar]
  69. Yuan Z. Ma R. Zhang Q. Zhao C. Statistical inferences of HIVRNA and fracture based on the pak1 expression via neural network model. Curr. HIV Res. 2023 21 1 43 55 10.2174/1570162X21666221128153942 36443971
    [Google Scholar]
  70. Ge Q. Lu X. Jiang R. Zhang Y. Zhuang X. Data mining and machine learning in HIV infection risk research: An overview and recommendations. Artif. Intell. Med. 2024 153 102887 10.1016/j.artmed.2024.102887 38735156
    [Google Scholar]
  71. Sahibzada K.I. Shahid S. Akhter M. Abid R. Azhar M. Hu Y. Wei D.Q. HIV octascanner: A machine learning approach to unveil proteolytic cleavage dynamics in HIV-1 protease substrates. J. Chem. Inf. Model. 2025 65 2 640 648 10.1021/acs.jcim.4c01808 39807569
    [Google Scholar]
  72. Zarkesh M. Kermani F. Ghalibaf M.B. Orooji A. Moradi R. Does maternal HIV infection affect neonatal outcomes? Curr. HIV Res. 2024 22 4 219 229 10.2174/011570162X292489240812065510 39171478
    [Google Scholar]
  73. Li Y. Feng Y. He Q. Ni Z. Hu X. Feng X. Ni M. The predictive accuracy of machine learning for the risk of death in HIV patients: A systematic review and meta-analysis. BMC Infect. Dis. 2024 24 1 474 10.1186/s12879‑024‑09368‑z 38711068
    [Google Scholar]
  74. Cheah M.H. Gan Y.N. Altice F.L. Wickersham J.A. Shrestha R. Salleh N.A.M. Ng K.S. Azwa I. Balakrishnan V. Kamarulzaman A. Ni Z. Testing the feasibility and acceptability of using an artificial intelligence chatbot to promote HIV testing and pre-exposure prophylaxis in malaysia: Mixed methods study. JMIR Human Factors 2024 11 e52055 10.2196/52055 38277206
    [Google Scholar]
  75. Comulada W.S. Rotheram-Borus M.J. Arnold E.M. Norwood P. Lee S.J. Ocasio M.A. Flynn R. Nielsen K. Bolan R. Klausner J. Swendeman D. Using machine learning to identify predictors of sexually transmitted infections over time among young people living with or at risk for hiv who participated in atn protocols 147, 148, and 149. Sex. Transm. Dis. 2023 50 11 739 745 10.1097/OLQ.0000000000001854 37643402
    [Google Scholar]
/content/journals/chr/10.2174/011570162X360028250418095855
Loading
/content/journals/chr/10.2174/011570162X360028250418095855
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: emerging trends ; visualization analysis ; provirus ; HIV reservoirs ; proviral dynamics ; CiteSpace
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test