Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Introduction

The enduring presence of HIV reservoirs represents an important obstacle to clinical management. Extensive research has been conducted in this field, but there are no bibliometric analyses focusing on HIV reservoir research. Aim: This study aimed to present the current status and global trends in HIV reservoir research through bibliometric analysis.

Methods

Studies on HIV reservoirs published from 1 January 1994 to 31 December 2023 were included in the Web of Science Core Collection database, and annual publication numbers, institutions, countries, and authors were analysed using CiteSpace bibliometric software. Furthermore, popular research topics and trends were analysed using co-cited references and keywords. From 1994 to 2023, 5778 publications on HIV reservoirs were included, with the United States producing the most publications, citations, and research funding. The most productive individual author was Nicolas Chomont. Cell was the journal publishing the most publications, while Nat Med had the best total link strength. The University of California System was the institution that made the greatest contribution. Keyword clustering analysis of the extracted publications indicated that the research areas over the past three decades have primarily focused on “central nervous system,” “histone deacetylase,” “multiple Epstein‒Barr virus infection,” and “dendritic cell.”

Results

Moreover, keyword emergence analysis indicates that “provirus” and “identification” are likely to become central themes in future research. Future investigations should prioritize elucidating the specific mechanisms underlying proviral persistence and the identification of novel biomarkers in HIV reservoirs. Additionally, exploring the role of proviral dynamics in therapeutic development and reservoir targeting could offer new insights into potential treatment strategies.

Conclusion

This study makes a significant contribution to the understanding of HIV reservoirs, shedding light on key characteristics and emerging trends while also pointing to future research directions.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X360028250418095855
2025-05-02
2025-12-19
Loading full text...

Full text loading...

References

  1. United Nations Programme on HIV/AIDS. The Urgency of Now: AIDS at a Crossroads UNAIDS:Geneva2024https://www.unaids.org/sites/default/files/media_asset/2024-unaids-global-aids-update_en.pdf
    [Google Scholar]
  2. Cabrera-RodríguezR. Pérez-YanesS. Estévez-HerreraJ. The interplay of HIV and autophagy in early infection.Front. Microbiol.20211266144610.3389/fmicb.2021.66144633995324
    [Google Scholar]
  3. RobbinsH.A. ShielsM.S. PfeifferR.M. EngelsE.A. Epidemiologic contributions to recent cancer trends among HIV-infected people in the United States.AIDS201428688189010.1097/QAD.000000000000016324300545
    [Google Scholar]
  4. SuttonL. GuénelP. TanguyM.L. Acute myeloid leukaemia in human immunodeficiency virus‐infected adults: Epidemiology, treatment feasibility and outcome.Br. J. Haematol.2001112490090810.1046/j.1365‑2141.2001.02661.x11298584
    [Google Scholar]
  5. SorokinaA. AnchakovaE. DashinimaevE. Strategies for HIV-1 suppression through key genes and cell therapy.Front. Med.202310125999510.3389/fmed.2023.125999538093984
    [Google Scholar]
  6. GarcíaF. PlanaM. VidalC. Dynamics of viral load rebound and immunological changes after stopping effective antiretroviral therapy.AIDS19991311F79F8610.1097/00002030‑199907300‑0000210449278
    [Google Scholar]
  7. ZylV.G. BaleM.J. KearneyM.F. HIV evolution and diversity in ART-treated patients.Retrovirology20181511410.1186/s12977‑018‑0395‑429378595
    [Google Scholar]
  8. BrunerK.M. WangZ. SimonettiF.R. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.Nature2019566774212012510.1038/s41586‑019‑0898‑830700913
    [Google Scholar]
  9. GoujardC. BonarekM. MeyerL. CD4 cell count and HIV DNA level are independent predictors of disease progression after primary HIV type 1 infection in untreated patients.Clin. Infect. Dis.200642570971510.1086/50021316447119
    [Google Scholar]
  10. WilliamsJ.P. HurstJ. StöhrW. HIV-1 DNA predicts disease progression and post-treatment virological control.eLife20143e0382110.7554/eLife.0382125217531
    [Google Scholar]
  11. NinkovA. FrankJ.R. MaggioL.A. Bibliometrics: Methods for studying academic publishing.Perspect. Med. Educ.202111317317610.1007/S40037‑021‑00695‑434914027
    [Google Scholar]
  12. ChenC. Searching for intellectual turning points: Progressive knowledge domain visualization.Proc Natl Acad Sci USA2004Suppl 1Suppl 15303531010.1073/pnas.0307513100
    [Google Scholar]
  13. SoodS.K. RawatK.S. KumarD. Analytical mapping of information and communication technology in emerging infectious diseases using CiteSpace.Telemat. Inform.20226910179610.1016/j.tele.2022.10179635282387
    [Google Scholar]
  14. WangN. ZhangR. YeZ. Studies on HIV/AIDS among students: Bibliometric analysis.Interact. J. Med. Res.202312e4604210.2196/4604237540553
    [Google Scholar]
  15. BrandesU. A faster algorithm for betweenness centrality*.J. Math. Sociol.200125216317710.1080/0022250X.2001.9990249
    [Google Scholar]
  16. ChenC. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature.J. Am. Soc. Inf. Sci. Technol.200657335937710.1002/asi.20317
    [Google Scholar]
  17. KleinbergJ. Bursty and hierarchical structure in streams.Data Min. Knowl. Disc2002749110110.1145/775047.775061
    [Google Scholar]
  18. ArchinN.M. LibertyA.L. KashubaA.D. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy.Nature2012487740848248510.1038/nature1128622837004
    [Google Scholar]
  19. NewmanM.E.J. Modularity and community structure in networks.Proc. Natl. Acad. Sci. USA2006103238577858210.1073/pnas.060160210316723398
    [Google Scholar]
  20. RousseeuwP.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.J. Comput. Appl. Math.198720536510.1016/0377‑0427(87)90125‑7
    [Google Scholar]
  21. wwCNS viral infection in HIV-infected humanized mice.J. Clin. Invest.201812872862287610.1172/JCI9896829863499
    [Google Scholar]
  22. KincerL.P. JosephS.B. GilleeceM.M. HauserB.M. SizemoreS. ZhouS. Di GermanioC. ZetterbergH. FuchsD. DeeksS.G. SwanstromR. Rebound HIV-1 in cerebrospinal fluid after antiviral therapy interruption is mainly clonally amplified R5 T cell tropic virus.Nat. Microbiol.20238226027136717720
    [Google Scholar]
  23. ChanP. HellmuthJ. SpudichS. ValcourV. Cognitive impairment and persistent cns injury in treated HIV.Curr. HIV/AIDS Rep.201613420921710.1007/s11904‑016‑0319‑727188299
    [Google Scholar]
  24. TangY. ChaillonA. GianellaS. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy.J. Clin. Invest.202313312e16741710.1172/JCI16741737317962
    [Google Scholar]
  25. MargolisD.M. Histone deacetylase inhibitors and HIV latency.Curr. Opin. HIV AIDS201161252910.1097/COH.0b013e328341242d21242890
    [Google Scholar]
  26. CoullJ.J. RomerioF. SunJ.M. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1.J. Virol.200074156790679910.1128/JVI.74.15.6790‑6799.200010888618
    [Google Scholar]
  27. MargolisD.M. Mechanisms of HIV latency: An emerging picture of complexity.Curr. HIV/AIDS Rep.201071374310.1007/s11904‑009‑0033‑920425056
    [Google Scholar]
  28. WilliamsS.A. ChenL.F. KwonH. Ruiz-JaraboC.M. VerdinE. GreeneW.C. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation.EMBO J.200625113914910.1038/sj.emboj.760090016319923
    [Google Scholar]
  29. BenkiraneM. ChunR.F. XiaoH. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat.J. Biol. Chem.199827338248982490510.1074/jbc.273.38.248989733796
    [Google Scholar]
  30. DolcettiR. B lymphocytes and Epstein–Barr virus: The lesson of post-transplant lymphoproliferative disorders.Autoimmun. Rev.2007729610110.1016/j.autrev.2007.02.01218035317
    [Google Scholar]
  31. OlszewskiA.J. FallahJ. CastilloJ.J. Human immunodeficiency virus‐associated lymphomas in the antiretroviral therapy era: Analysis of the National Cancer Data Base.Cancer2016122172689269710.1002/cncr.3011227337679
    [Google Scholar]
  32. Linke-SerinsözE. FendF. Quintanilla-MartinezL. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point.Semin. Diagn. Pathol.201734435236310.1053/j.semdp.2017.04.00328506687
    [Google Scholar]
  33. YaoQ.Y. TierneyR.J. Croom-CarterD. Frequency of multiple Epstein-Barr virus infections in T-cell-immunocompromised individuals.J. Virol.19967084884489410.1128/jvi.70.8.4884‑4894.19968763991
    [Google Scholar]
  34. GroggK.L. MillerR.F. DoganA. HIV infection and lymphoma.J. Clin. Pathol.200760121365137210.1136/jcp.2007.05195318042692
    [Google Scholar]
  35. LaurenceJ. AstrinS.M. Human immunodeficiency virus induction of malignant transformation in human B lymphocytes.Proc. Natl. Acad. Sci. USA199188177635763910.1073/pnas.88.17.76351652756
    [Google Scholar]
  36. GrossmanZ. Meier-SchellersheimM. SousaA.E. VictorinoR.M.M. PaulW.E. CD4+ T-cell depletion in HIV infection: Are we closer to understanding the cause?Nat. Med.20028431932310.1038/nm0402‑31911927927
    [Google Scholar]
  37. Martín-MorenoA. Muñoz-FernándezM.A. Dendritic cells, the double agent in the war against HIV-1.Front. Immunol.201910248510.3389/fimmu.2019.0248531708924
    [Google Scholar]
  38. MeradM. ManzM.G. Dendritic cell homeostasis.Blood2009113153418342710.1182/blood‑2008‑12‑18064619176316
    [Google Scholar]
  39. ColemanC.M. WuL. HIV interactions with monocytes and dendritic cells: Viral latency and reservoirs.Retrovirology2009615110.1186/1742‑4690‑6‑5119486514
    [Google Scholar]
  40. JanasA.M. DongC. WangJ.H. WuL. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry.Virology2008375244245110.1016/j.virol.2008.01.04418329684
    [Google Scholar]
  41. GarciaE. NikolicD.S. PiguetV. HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3.Traffic20089220021410.1111/j.1600‑0854.2007.00678.x18034776
    [Google Scholar]
  42. BurtonG. KeeleB.F. EstesJ.D. ThackerT.C. GartnerS. Follicular dendritic cell contributions to HIV pathogenesis.Semin. Immunol.200214427528410.1016/S1044‑5323(02)00060‑X12163303
    [Google Scholar]
  43. SmithB.A. GartnerS. LiuY. Persistence of infectious HIV on follicular dendritic cells.J. Immunol.2001166169069610.4049/jimmunol.166.1.69011123354
    [Google Scholar]
  44. HammerS.M. EronJ.J.Jr ReissP. Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel.JAMA2008300555557010.1001/jama.300.5.55518677028
    [Google Scholar]
  45. SantoroM.M. FabeniL. ArmeniaD. Reliability and clinical relevance of the HIV-1 drug resistance test in patients with low viremia levels.Clin. Infect. Dis.20145881156116410.1093/cid/ciu02024429430
    [Google Scholar]
  46. LiQ. ChenM. ZhaoH. Persistent low-level viremia is an independent risk factor for virologic failure: A retrospective cohort study in china.Infect. Drug Resist.2021144529453710.2147/IDR.S33292434754201
    [Google Scholar]
  47. IoannidisJ.P.A. AbramsE.J. AmmannA. Perinatal transmission of human immunodeficiency virus type 1 by pregnant women with RNA virus loads <1000 copies/ml.J. Infect. Dis.2001183453954510.1086/31853011170978
    [Google Scholar]
  48. CohenJ. Bound for Glory.Science201334161511168117110.1126/science.341.6151.116824030996
    [Google Scholar]
  49. SimekM.D. RidaW. PriddyF.H. Human immunodeficiency virus type 1 elite neutralizers: Individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm.J. Virol.200983147337734810.1128/JVI.00110‑0919439467
    [Google Scholar]
  50. AnanworanichJ. McSteenB. RobbM.L. Broadly neutralizing antibody and the HIV reservoir in acute HIV infection.Curr. Opin. HIV AIDS201510319820610.1097/COH.000000000000014425700203
    [Google Scholar]
  51. WangQ. ZhangS. NguyenH.T. SodroskiJ. Inhibition of human immunodeficiency virus (HIV-1) infectivity by expression of poorly or broadly neutralizing antibodies against Env in virus-producing cells.J. Virol.2024982e01594e2310.1128/jvi.01594‑2338289101
    [Google Scholar]
  52. ZhuW. JiaoY. LeiR. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy.PLoS One201166e2108110.1371/journal.pone.002108121687638
    [Google Scholar]
  53. SilicianoJ.D. KajdasJ. FinziD. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells.Nat. Med.20039672772810.1038/nm88012754504
    [Google Scholar]
  54. TrémeauxP. LenfantT. BoufassaF. Increasing contribution of integrated forms to total HIV DNA in blood during HIV disease progression from primary infection.EBioMedicine20194145546410.1016/j.ebiom.2019.02.01630803934
    [Google Scholar]
  55. SilicianoJD SilicianoRF Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals.Methods Mol Biol20053040031610.1385/1‑59259‑907‑9:00316061962
    [Google Scholar]
  56. PollackR.A. JonesR.B. PerteaM. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape.Cell Host Microbe2017214494506.e410.1016/j.chom.2017.03.00828407485
    [Google Scholar]
  57. HoY.C. ShanL. HosmaneN.N. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure.Cell2013155354055110.1016/j.cell.2013.09.02024243014
    [Google Scholar]
  58. GayC.L. HanleyP.J. FalcinelliS.D. The effects of human immunodeficiency virus type 1 (HIV-1) antigen-expanded specific t-cell therapy and vorinostat on persistent HIV-1 infection in people with HIV on antiretroviral therapy.J. Infect. Dis.2024229374375210.1093/infdis/jiad42338349333
    [Google Scholar]
  59. HenrichT.J. HobbsK.S. HanhauserE. Human immunodeficiency virus type 1 persistence following systemic chemotherapy for malignancy.J. Infect. Dis.2017216225426210.1093/infdis/jix26528838149
    [Google Scholar]
  60. LaeremansT. Autologous dendritic cell vaccination against HIV-1 induces changes in natural killer cell phenotype and functionality.Vaccines2023812938250842
    [Google Scholar]
  61. SinghK. NatarajanV. DewarR. Long-term persistence of transcriptionally active ‘defective’ HIV-1 proviruses: Implications for persistent immune activation during antiretroviral therapy.AIDS202337142119213010.1097/QAD.000000000000366737555786
    [Google Scholar]
  62. BrunerK.M. MurrayA.J. PollackR.A. Defective proviruses rapidly accumulate during acute HIV-1 infection.Nat. Med.20162291043104910.1038/nm.415627500724
    [Google Scholar]
  63. GuptaA. LamB.D. ZerbeyS. Artificial intelligence meets venous thromboembolism: Informaticians’ insights on diagnosis, prevention, and management. Blood Vessels.Thromb. Hemost.20241410003110.1016/j.bvth.2024.10003139868029
    [Google Scholar]
  64. JumreornvongO. ChangD. GaldoG.P. YongJ. JotwaniR. Artificial intelligence assisted virtual reality training module for Gasserian ganglion block.Interventional Pain Med20254110053610.1016/j.inpm.2024.10053639867296
    [Google Scholar]
  65. JungI.C. SchulerK. ZerlikM. GrummtS. SedlmayrM. SedlmayrB. Overview of basic design recommendations for user-centered explanation interfaces for AI-based clinical decision support systems: A scoping review.Digit. Health2025112055207624130829810.1177/2055207624130829839866885
    [Google Scholar]
  66. Leiva-EscobarI. CortesC.P. LamadridA. Employment status and HIV viral load in chilean adult population: A propensity score analysis.AIDS Behav.20251910.1007/s10461‑024‑04600‑y39779625
    [Google Scholar]
  67. ThandlaS.R. ArmstrongG.Q. MenonA. Comparing new tools of artificial intelligence to the authentic intelligence of our global health students.BioData Min.20241715810.1186/s13040‑024‑00408‑739696442
    [Google Scholar]
  68. JiX. TangZ. OsborneS.R. STI/HIV risk prediction model development—A novel use of public data to forecast STIs/HIV risk for men who have sex with men.Front. Public Health202512151168910.3389/fpubh.2024.151168939830177
    [Google Scholar]
  69. YuanZ. MaR. ZhangQ. ZhaoC. Statistical inferences of HIVRNA and fracture based on the pak1 expression via neural network model.Curr. HIV Res.2023211435510.2174/1570162X2166622112815394236443971
    [Google Scholar]
  70. GeQ. LuX. JiangR. ZhangY. ZhuangX. Data mining and machine learning in HIV infection risk research: An overview and recommendations.Artif. Intell. Med.202415310288710.1016/j.artmed.2024.10288738735156
    [Google Scholar]
  71. SahibzadaK.I. ShahidS. AkhterM. HIV octascanner: A machine learning approach to unveil proteolytic cleavage dynamics in HIV-1 protease substrates.J. Chem. Inf. Model.202565264064810.1021/acs.jcim.4c0180839807569
    [Google Scholar]
  72. ZarkeshM. KermaniF. GhalibafM.B. OroojiA. MoradiR. Does maternal HIV infection affect neonatal outcomes?Curr. HIV Res.202422421922910.2174/011570162X29248924081206551039171478
    [Google Scholar]
  73. LiY. FengY. HeQ. The predictive accuracy of machine learning for the risk of death in HIV patients: A systematic review and meta-analysis.BMC Infect. Dis.202424147410.1186/s12879‑024‑09368‑z38711068
    [Google Scholar]
  74. CheahM.H. GanY.N. AlticeF.L. Testing the feasibility and acceptability of using an artificial intelligence chatbot to promote HIV testing and pre-exposure prophylaxis in malaysia: Mixed methods study.JMIR Human Factors202411e5205510.2196/5205538277206
    [Google Scholar]
  75. ComuladaW.S. Rotheram-BorusM.J. ArnoldE.M. Using machine learning to identify predictors of sexually transmitted infections over time among young people living with or at risk for HIV who participated in atn protocols 147, 148, and 149.Sex. Transm. Dis.2023501173974510.1097/OLQ.000000000000185437643402
    [Google Scholar]
/content/journals/chr/10.2174/011570162X360028250418095855
Loading
/content/journals/chr/10.2174/011570162X360028250418095855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test