Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Aims

The Human Immunodeficiency Virus (HIV) is a significant global health concern that affects millions of people worldwide. This virus targets the immune system, specifically CD4 cells, weakening the body’s ability to combat infections and diseases.

Background

, a plant of the genus Lamiaceae, and its root is the main part used in medicine. Pharmacological studies have shown that has various activities such as anti-inflammatory, anti-viral, anti-bacterial, anti-tumor, antioxidant effects, .

Objective

To investigate the anti-HIV activity of against the HIV coreceptor CXCR4.

Methods

We conducted studies using bioinformatics tools like SWISS ADME, ProTox-II, PyRx, and Biovia Discovery Studio. Ligand structures were retrieved from the PubChem database, and the crystal structure of the target protein CXCR4 Chemokine receptor (PDB ID: 3ODU) with a resolution of 2.50 Å was retrieved from the Protein data bank.

Results

From the results, we filtered out 19 compounds with the highest binding affinity compared to the native ligand (-7.9 kcal/mol), which ranges from -10.1 kcal/mol to -8.0 kcal/mol. For the 19 compounds, we conducted ADME and Toxicity studies. From the studies, Baicalin, Wogonoside, and Oroxylin A-7-O-Glucuronide possess binding affinity of -10.1 kcal/mol, -9.6 kcal/mol, and -9.2 kcal/mol, which is greater than the native ligand (-7.9 kcal/mol).

Conclusion

Thus, Baicalin may possess the most potential activity against HIV. Moreover, further and studies are needed to evaluate their biological potential, and this work may help scientists in their future studies.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X345178250316123743
2025-04-04
2025-11-05
Loading full text...

Full text loading...

References

  1. EisingerR.W. FauciA.S. Ending the HIV/AIDS pandemic1.Emerg. Infect. Dis.201824341341610.3201/eid2403.17179729460740
    [Google Scholar]
  2. SimonV. HoD.D. KarimA.Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment.Lancet2006368953448950410.1016/S0140‑6736(06)69157‑516890836
    [Google Scholar]
  3. SchalkwykV.C. MahyM. JohnsonL.F. Imai-EatonJ.W. Updated data and methods for the 2023 UNAIDS HIV estimates.J. Acquir. Immune Defic. Syndr.2024951Se1e410.1097/QAI.000000000000334438180734
    [Google Scholar]
  4. MorisonL. The global epidemiology of HIV/AIDS.Br. Med. Bull.200158171810.1093/bmb/58.1.711714621
    [Google Scholar]
  5. MathersC.D. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.003044217132052
    [Google Scholar]
  6. German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood'. Human immunodeficiency virus (HIV).Transf Med Chemoth20164332032210.1159/00044585227403094
    [Google Scholar]
  7. CloydM.W. Human retroviruses. In: Baron S, editor.Medical Microbiology.4th edGalveston, TXUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  8. International Agency for Research on Cancer IARC Working Group on the Evaluation of Carcinogenic Risk to Humans Biological Agents Lyon (FR)International Agency for Research on Cancer; 2012 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans(100B).2012 Available from https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans
    [Google Scholar]
  9. SharpP.M. HahnB.H. Origins of HIV aned th AIDS pandemic.Cold Spring Harb. Perspect. Med.201111a00684110.1101/cshperspect.a00684122229120
    [Google Scholar]
  10. SangarV. SamantL. PawarS. VaidyaS. ChowdharyA. In silico approach to combat HIV using phytoconstituents of Moringa oleifera Lam.J. Chem. Pharm. Res.201579971021
    [Google Scholar]
  11. NyamweyaS. HegedusA. JayeA. Rowland-JonesS. FlanaganK.L. MacallanD.C. Comparing HIV‐1 and HIV‐2 infection: Lessons for viral immunopathogenesis.Rev. Med. Virol.201323422124010.1002/rmv.173923444290
    [Google Scholar]
  12. ChanD.C. KimP.S. HIV entry and its inhibition.Cell199893568168410.1016/S0092‑8674(00)81430‑09630213
    [Google Scholar]
  13. ReitzM.S.Jr GalloR.C. Human immunodeficiency viruses. In :Mandell, Douglas, and Bennett’s principles and practice of infectious diseases.Orlando, FL, Eds.: WB Saunders20152054206510.1016/B978‑1‑4557‑4801‑3.00171‑5
    [Google Scholar]
  14. WilenC.B. TiltonJ.C. DomsR.W. Molecular mechanisms of HIV entry.Adv. Exp. Med. Biol.201172622324210.1007/978‑1‑4614‑0980‑9_10
    [Google Scholar]
  15. KlasseP.J. The molecular basis of HIV entry.Cell. Microbiol.20121481183119210.1111/j.1462‑5822.2012.01812.x22583677
    [Google Scholar]
  16. Fanales-BelasioE. RaimondoM. SuligoiB. ButtòS. HIV virology and pathogenetic mechanisms of infection: A brief overview.Ann. Ist. Super. Sanita201046151410.1590/S0021‑2571201000010000220348614
    [Google Scholar]
  17. BalkwillF. The significance of cancer cell expression of the chemokine receptor CXCR4.Semin. Cancer Biol.200414317117910.1016/j.semcancer.2003.10.00315246052
    [Google Scholar]
  18. WilenC.B. TiltonJ.C. DomsR.W. HIV: Cell binding and entry.Cold Spring Harb. Perspect. Med.201228a00686610.1101/cshperspect.a00686622908191
    [Google Scholar]
  19. BergerE.A. DomsR.W. FenyöE.M. A new classification for HIV-1.Nature1998391666424010.1038/345719440686
    [Google Scholar]
  20. BianchiM.E. MezzapelleR. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration.Front. Immunol.202011210910.3389/fimmu.2020.0210932983169
    [Google Scholar]
  21. ChatterjeeS. AzadB.B. NimmagaddaS. The intricate role of CXCR4 in cancer.Adv. Cancer Res.2014124318210.1016/B978‑0‑12‑411638‑2.00002‑125287686
    [Google Scholar]
  22. LukerK.E. LukerG.D. Functions of CXCL12 and CXCR4 in breast cancer.Cancer Lett.20062381304110.1016/j.canlet.2005.06.02116046252
    [Google Scholar]
  23. KorbeckiJ. BosiackiM. KupnickaP. BarczakK. ChlubekD. Baranowska-BosiackaI. CXCR4 as a therapeutic target in acute myeloid leukemia.Leukemia202438112303231710.1038/s41375‑024‑02326‑339261603
    [Google Scholar]
  24. FurusatoB. RhimJ.S. CXCR4 and cancer.Pathol. Int.200960749750510.1111/j.1440‑1827.2010.02548.x
    [Google Scholar]
  25. GangadharT. NandiS. SalgiaR. The role of chemokine receptor CXCR4 in lung cancer.Cancer Biol. Ther.20109640941610.4161/cbt.9.6.1123320147779
    [Google Scholar]
  26. LiuC.F. LiuS.Y. MinX.Y. The prognostic value of CXCR4 in ovarian cancer: A meta-analysis.PLoS One201493e9262910.1371/journal.pone.009262924658065
    [Google Scholar]
  27. MurakamiT. KawadaK. IwamotoM. The role of CXCR3 and CXCR4 in colorectal cancer metastasis.Int. J. Cancer2013132227628710.1002/ijc.2767022689289
    [Google Scholar]
  28. JuarezJ. BendallL. BradstockK. Chemokines and their receptors as therapeutic targets: The role of the SDF-1/CXCR4 axis.Curr. Pharm. Des.200410111245125910.2174/138161204345264015078139
    [Google Scholar]
  29. UllahT.R. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond.J. Bone Oncol.20191710025310.1016/j.jbo.2019.10025331372333
    [Google Scholar]
  30. SongJ.S. KangC.M. KangH.H. Inhibitory effect of CXC chemokine receptor 4 antagonist AMD3100 on bleomycin induced murine pulmonary fibrosis.Exp. Mol. Med.201042646547210.3858/emm.2010.42.6.04820498529
    [Google Scholar]
  31. ChungS.H. SekiK. ChoiB.I. CXC chemokine receptor 4 expressed in T cells plays an important role in the development of collagen-induced arthritis.Arthritis Res. Ther.2010125R18810.1186/ar315820939892
    [Google Scholar]
  32. FauciA.S. Host factors and the pathogenesis of HIV-induced disease.Nature1996384660952953410.1038/384529a08955267
    [Google Scholar]
  33. XuG. GuoJ. WuY. Chemokine receptor CCR5 antagonist maraviroc: Medicinal chemistry and clinical applications.Curr. Top. Med. Chem.201414131504151410.2174/156802661466614082714374525159165
    [Google Scholar]
  34. DeanL. Maraviroc therapy and CCR5 genotype. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279895/
    [Google Scholar]
  35. DebnathB. XuS. GrandeF. GarofaloA. NeamatiN. Small molecule inhibitors of CXCR4.Theranostics201331477510.7150/thno.537623382786
    [Google Scholar]
  36. ClercqD.E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US food and drug administration.Antivir. Chem. Chemother.201927204020661982938210.1177/204020661982938230776910
    [Google Scholar]
  37. ClercqD.E. YamamotoN. PauwelsR. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event.Proc. Natl. Acad. Sci. USA199289125286529010.1073/pnas.89.12.52861608936
    [Google Scholar]
  38. SalmanH. LazarusH.M. Plerixafor for autologous CD34+ cell mobilization.Core Evid.20116232910.2147/CE.S780121468240
    [Google Scholar]
  39. YangX. WanM. YuF. WangZ. Efficacy and safety of plerixafor for hematopoietic stem cell mobilization for autologous transplantation in patients with non Hodgkin lymphoma and multiple myeloma: A systematic review and meta analysis.Exp. Ther. Med.20191821141114810.3892/etm.2019.769131363366
    [Google Scholar]
  40. DekkersS. CasparB. GouldingJ. Small-molecule fluorescent ligands for the cxcr4 chemokine receptor.J. Med. Chem.20236675208522210.1021/acs.jmedchem.3c0015136944083
    [Google Scholar]
  41. ZhangH. KangD. HuangB. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities.Eur. J. Med. Chem.2016114657810.1016/j.ejmech.2016.02.05126974376
    [Google Scholar]
  42. RahimiB.V. AskariV.R. HosseinzadehH. Promising influences of Scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: A review.Phytother. Res.20213573558357410.1002/ptr.704633590943
    [Google Scholar]
  43. DasD. MaedaK. HayashiY. Insights into the mechanism of inhibition of CXCR4: Identification of Piperidinylethanamine analogs as anti-HIV-1 inhibitors.Antimicrob. Agents Chemother.20155941895190410.1128/AAC.04654‑1425583709
    [Google Scholar]
  44. MurakamiT. YamamotoN. Role of CXCR4 in HIV infection and its potential as a therapeutic target.Future Microbiol.2010571025103910.2217/fmb.10.6720632803
    [Google Scholar]
  45. DominguesM.J. NilssonS.K. CaoB. New agents in HSC mobilization.Int. J. Hematol.2017105214115210.1007/s12185‑016‑2156‑227905003
    [Google Scholar]
  46. GrandeF. OcchiuzziM.A. RizzutiB. CCR5/CXCR4 dual antagonism for the improvement of HIV infection therapy.Molecules201924355010.3390/molecules2403055030717348
    [Google Scholar]
  47. ThomasE. StewartL.E. DarleyB.A. PhamA.M. EstebanI. PandaS.S. Plant-based natural products and extracts: Potential source to develop new antiviral drug candidates.Molecules20212620619710.3390/molecules2620619734684782
    [Google Scholar]
  48. ShenJ. LiP. LiuS. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria.J. Ethnopharmacol.202126511319810.1016/j.jep.2020.11319832739568
    [Google Scholar]
  49. WangZ.L. WangS. KuangY. HuZ.M. QiaoX. YeM. A comprehensive review on phytochemistry, pharmacology, and flavonoidbiosynthesis of Scutellaria baicalensis.Pharm. Biol.201856146548410.1080/13880209.2018.149262031070530
    [Google Scholar]
  50. ZhaoT. TangH. XieL. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.J. Pharm. Pharmacol.20197191353136910.1111/jphp.1312931236960
    [Google Scholar]
  51. MoriA. NishinoC. EnokiN. TawataS. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus.Phytochemistry19872682231223410.1016/S0031‑9422(00)84689‑0
    [Google Scholar]
  52. OrhanD.D. ÖzçelikB. ÖzgenS. ErgunF. Antibacterial, antifungal, and antiviral activities of some flavonoids.Microbiol. Res.2010165649650410.1016/j.micres.2009.09.00219840899
    [Google Scholar]
  53. OrtegaJ.T. SerranoM.L. SuárezA.I. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus in vitro.EXCLI J.2019181037104831762727
    [Google Scholar]
  54. CasanoG. DumètreA. PannecouqueC. HutterS. AzasN. RobinM. Anti-HIV and antiplasmodial activity of original flavonoid derivatives.Bioorg. Med. Chem.201018166012602310.1016/j.bmc.2010.06.06720638854
    [Google Scholar]
  55. Li-WeberM. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin.Cancer Treat. Rev.2009351576810.1016/j.ctrv.2008.09.00519004559
    [Google Scholar]
  56. YingruiW. ZhengL. GuoyanL. HongjieW. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications.Biomed. Pharmacother.202214811269010.1016/j.biopha.2022.11269035158145
    [Google Scholar]
  57. PanthongA. KanjanapothiD. TuntiwachwuttikulP. PancharoenO. ReutrakulV. Antiinflammatory activity of flavonoids.Phytomedicine19941214114410.1016/S0944‑7113(11)80032‑223195887
    [Google Scholar]
  58. TanY.Q. LinF. DingY.K. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases.Phytomedicine202210715445810.1016/j.phymed.2022.15445836152591
    [Google Scholar]
  59. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.Sci World J20132013116275010.1155/2013/16275024470791
    [Google Scholar]
  60. TsaoR. McCallumJ. Chemistry of flavonoids.Fruit and Vegetable Phytochemicals. RosaL.A. Alvarez-ParrillaE. Gonzalez-AguilarG.A. Hoboken, New JerseyWILEY-Blackwell2010131153
    [Google Scholar]
  61. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: A review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑128510083
    [Google Scholar]
  62. ChaudharyK.K. MishraN. A review on molecular docking: A novel tool for drug discovery.Databases2016341029
    [Google Scholar]
  63. WuB. ChienE.Y.T. MolC.D. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.Science201033060071066107110.1126/science.119439620929726
    [Google Scholar]
  64. AliS.M.A. HelinaN. KumarS.V. VarshiniE. AhmadK.M.F.T. RajamohamedH. Novel drug repurposing strategy as an alternative therapeutic concept for scrub typhus using computational studies.J. Pure Appl. Microbiol.20241821167117610.22207/JPAM.18.2.35
    [Google Scholar]
  65. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  66. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  67. TijjaniH. OlatundeA. AdegunloyeA.P. IsholaA.A. In silico insight into the interaction of 4-aminoquinolines with selected SARS-CoV-2 structural and nonstructural proteins. In: Coronavirus Drug Discovery.Amsterdam, NetherlandsElsevier2022313333
    [Google Scholar]
  68. IvanovićV. RančićM. ArsićB. PavlovićA. Lipinski’s rule of five, famous extensions and famous exceptions.Chemia Naissensis20203117118110.46793/ChemN3.1.171I
    [Google Scholar]
  69. MardianingrumR. RuswantoR. AgustienG.S. NuraisahA. The active compound of bangle essential oil as cyclooxygenase-2 (Cox-2) inhibitor: In silico approach.J Val Chem202062156168
    [Google Scholar]
  70. VladI.M. NutaD.C. ChiritaC. In silico and in vitro experimental studies of new dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes designed as potential antimicrobial agents.Molecules202025232110.3390/molecules2502032131941125
    [Google Scholar]
  71. JagannathanR. Characterization of drug-like chemical space for cytotoxic marine metabolites using multivariate methods.ACS Omega2019435402541110.1021/acsomega.8b0176431179404
    [Google Scholar]
  72. ZhaoQ. ChenX.Y. MartinC. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants.Sci. Bull.201661181391139810.1007/s11434‑016‑1136‑527730005
    [Google Scholar]
/content/journals/chr/10.2174/011570162X345178250316123743
Loading
/content/journals/chr/10.2174/011570162X345178250316123743
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CD4 cells; coreceptor; CXCR4; flavonoids; HIV; Scutellaria baicalensis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test