Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Introduction

Myocardial ischemia/reperfusion injuries (MI/RI) are responsible for fatal cardiovascular diseases. Myocardial infarction may lead to ischemic cardiomyopathy (ICM). Thereby, illustrating the MI/RI molecular basis could lead to the emergence of novel therapeutic options. pathway is well-known in renal ischemia/ reperfusion. protein can promote autophagy after hypoxia.

Materials and Methods

We selected the dataset GSE46224 from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database for evaluation. This dataset was analyzed using tools such as the Kyoto Encyclopedia of Genes and Genomes, GeneCodis, and BioGRID. Three groups of patients were selected from the dataset. ICM group (n=8), non-failing (NF) group (n=8), and non-ischemic cardiomyopathy (NICM) group (n=8) evaluated for 15 genes expression levels. P-value <0.05 is statistically significant.

Results

showed significantly lower gene expression in the ICM group compared to the NF group (-value = 0.012, difference = -6.24). was also significantly down-regulated in the ICM group compared to the NF group (-value =0.0159, difference = -1.478). In contrast, and NF-κB were significantly up-regulated in the ICM group (STAT5B: -value = 0.0238, difference = 2.388; NF-κB: -value = 0.0158, difference = 1.11). The analysis of differences and the volcano plot confirmed these findings, highlighting key dysregulated genes in ICM.

Conclusion

In conclusion, ICM patients have altered expression compared to NF individuals. The significant down-regulation of and , along with the up-regulation of and NF-κB, suggests that targeting could be an important strategy to ameliorate ischemia-related cardiomyocyte damage.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X366280250526131550
2025-06-11
2025-11-16
Loading full text...

Full text loading...

References

  1. SchironeL. ForteM. D’AmbrosioL. ValentiV. VecchioD. SchiavonS. SpinosaG. SartoG. PetrozzaV. FratiG. SciarrettaS. An overview of the molecular mechanisms associated with myocardial ischemic injury: State of the art and translational perspectives.Cells2022117116510.3390/cells1107116535406729
    [Google Scholar]
  2. TangC.Y. LaiC.C. HuangP.H. YangA.H. ChiangS.C. HuangP.C. TsengK.W. HuangC.H. Magnolol reduces myocardial injury induced by renal ischemia and reperfusion.J. Chin. Med. Assoc.202285558459610.1097/JCMA.000000000000072735385419
    [Google Scholar]
  3. PiamsiriC. ManeechoteC. JinawongK. ArunsakB. ChunchaiT. NawaraW. KerdphooS. ChattipakornS.C. ChattipakornN. Chronic mitochondrial dynamic-targeted therapy alleviates left ventricular dysfunction by reducing multiple programmed cell death in post-myocardial infarction rats.Eur. J. Pharmacol.202497717673610.1016/j.ejphar.2024.17673638878877
    [Google Scholar]
  4. ZhaoT. WuW. SuiL. HuangQ. NanY. LiuJ. AiK. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries.Bioact. Mater.20227477210.1016/j.bioactmat.2021.06.00634466716
    [Google Scholar]
  5. AjamiM. DavoodiS.H. HabibeyR. NamaziN. SoleimaniM. Pazoki-ToroudiH. Effect of DHA + EPA on oxidative stress and apoptosis induced by ischemia‐reperfusion in rat kidneys.Fundam. Clin. Pharmacol.201327659360210.1111/j.1472‑8206.2012.01066.x22943605
    [Google Scholar]
  6. ZhangM. LiuQ. MengH. DuanH. LiuX. WuJ. GaoF. WangS. TanR. YuanJ. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.2024911210.1038/s41392‑023‑01688‑x38185705
    [Google Scholar]
  7. LiT. TanY. OuyangS. HeJ. LiuL. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis.Gene202280814596810.1016/j.gene.2021.14596834530090
    [Google Scholar]
  8. TursynbayY. ZhangJ. LiZ. TokayT. ZhumadilovZ. WuD. XieY. Pim-1 kinase as cancer drug target: An update.Biomed. Rep.20164214014610.3892/br.2015.56126893828
    [Google Scholar]
  9. MahataS. BeheraS.K. KumarS. SahooP.K. SarkarS. FazilM.H.U.T. NasareV.D. In-silico and in-vitro investigation of STAT3-PIM1 heterodimeric complex: Its mechanism and inhibition by curcumin for cancer therapeutics.Int. J. Biol. Macromol.202220835636610.1016/j.ijbiomac.2022.03.13735346675
    [Google Scholar]
  10. SantioN.M. KoskinenP.J. PIM kinases: From survival factors to regulators of cell motility.Int. J. Biochem. Cell Biol.201793748510.1016/j.biocel.2017.10.01629108877
    [Google Scholar]
  11. ZhaoY. A systematic review on active sites and functions of PIM-1 protein.Hum. Cell202235211410.1007/s13577‑021‑00656‑335000143
    [Google Scholar]
  12. ZhaoX.Y. RenJ.M. LiuH.R. ZhouT.T. WangX.Y. LiuS. ChenH.P. DJ-1 activates the AMPK/mTOR pathway by binding RACK1 to induce autophagy and protect the myocardium from ischemia/hypoxia injury.Biochem. Biophys. Res. Commun.202263727628510.1016/j.bbrc.2022.10.10036410277
    [Google Scholar]
  13. GuJ.J. WangZ. ReevesR. MagnusonN.S. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis.Oncogene200928484261427110.1038/onc.2009.27619749799
    [Google Scholar]
  14. WuJ. ChuE. KangY. Pim kinases in multiple myeloma.Cancers20211317430410.3390/cancers1317430434503111
    [Google Scholar]
  15. AjamiM. EghtesadiS. RazazJ.M. KalantariN. HabibeyR. NilforoushzadehM.A. ZarrindastM. Pazoki-ToroudiH. Expression of Bcl-2 and Bax after hippocampal ischemia in DHA + EPA treated rats.Neurol. Sci.201132581181810.1007/s10072‑011‑0621‑521617951
    [Google Scholar]
  16. JavedanG. ShidfarF. DavoodiS.H. AjamiM. GorjipourF. SuredaA. NabaviS.M. DagliaM. Pazoki-ToroudiH. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin.Mol. Nutr. Food Res.201660122665267710.1002/mnfr.20160011227466783
    [Google Scholar]
  17. WizaC. NascimentoE.B.M. OuwensD.M. Role of PRAS40 in Akt and mTOR signaling in health and disease.Am. J. Physiol. Endocrinol. Metab.201230212E1453E146010.1152/ajpendo.00660.201122354785
    [Google Scholar]
  18. ChongZ.Z. Targeting PRAS40 for multiple diseases.Drug Discov. Today20162181222123110.1016/j.drudis.2016.04.00527086010
    [Google Scholar]
  19. VölkersM. TokoH. DoroudgarS. DinS. QuijadaP. JoyoA.Y. OrnelasL. JoyoE. ThueraufD.J. KonstandinM.H. GudeN. GlembotskiC.C. SussmanM.A. Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1.Proc. Natl. Acad. Sci. USA201311031126611266610.1073/pnas.130145511023842089
    [Google Scholar]
  20. ZhouQ. TangS. ZhangX. ChenL. Targeting PRAS40: A novel therapeutic strategy for human diseases.J. Drug Target.202129770371510.1080/1061186X.2021.188247033504218
    [Google Scholar]
  21. KimW. YounH. SeongK.M. YangH.J. YunY.J. KwonT. KimY.H. LeeJ.Y. JinY.W. YounB. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases.Radiat. Res.2011176553955210.1667/RR2609.121910584
    [Google Scholar]
  22. ObsilovaV. HonzejkovaK. ObsilT. Structural insights support targeting ASK1 kinase for therapeutic interventions.Int. J. Mol. Sci.202122241339510.3390/ijms22241339534948191
    [Google Scholar]
  23. LuoY. ZhuJ. ZhaoF. ShiL. LiY. WuX. PIM1 attenuates renal ischemia–reperfusion injury by inhibiting ASK1-JNK/P38.Int. Immunopharmacol.202311410956310.1016/j.intimp.2022.10956336513021
    [Google Scholar]
  24. YangK.C. YamadaK.A. PatelA.Y. TopkaraV.K. GeorgeI. CheemaF.H. EwaldG.A. MannD.L. NerbonneJ.M. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support.Circulation201412991009102110.1161/CIRCULATIONAHA.113.00386324429688
    [Google Scholar]
  25. TymińskaA. OzierańskiK. BalsamP. MaciejewskiC. WancerzA. BrociekE. MarchelM. Crespo-LeiroM.G. MaggioniA.P. DrożdżJ. OpolskiG. GrabowskiM. Kapłon-CieślickaA. Ischemic cardiomyopathy versus non-ischemic dilated cardiomyopathy in patients with reduced ejection fraction— clinical characteristics and prognosis depending on heart failure etiology (Data from European Society of Cardiology Heart Failure Registries).Biology202211234110.3390/biology1102034135205207
    [Google Scholar]
  26. LuY. AnL. TaylorM.R.G. ChenQ.M. Nrf2 signaling in heart failure: Expression of Nrf2, Keap1, antioxidant, and detoxification genes in dilated or ischemic cardiomyopathy.Physiol. Genomics202254311512710.1152/physiolgenomics.00079.202135073209
    [Google Scholar]
  27. LiuX. QuJ. XueW. HeL. WangJ. XiX. LiuX. YinY. QuY. Bioinformatics-based identification of potential microRNA biomarkers in frequent and non-frequent exacerbators of COPD.Int. J. Chron. Obstruct. Pulmon. Dis.2018131217122810.2147/COPD.S16345929713155
    [Google Scholar]
  28. ManchiaM. PirasI.S. HuentelmanM.J. PinnaF. ZaiC.C. KennedyJ.L. CarpinielloB. Pattern of gene expression in different stages of schizophrenia: Down-regulation of NPTX2 gene revealed by a meta-analysis of microarray datasets.Eur. Neuropsychopharmacol.201727101054106310.1016/j.euroneuro.2017.07.00228732597
    [Google Scholar]
  29. HuangY. ZhuJ. LiW. ZhangZ. XiongP. WangH. ZhangJ. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer.Oncol. Rep.20183931338134629286167
    [Google Scholar]
  30. ZhangQ. ChenW. ChenS. LiS. WeiD. HeW. Identification of key genes and upstream regulators in ischemic stroke.Brain Behav.201997e0131910.1002/brb3.131931168961
    [Google Scholar]
  31. DangH. YeY. ZhaoX. ZengY. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database.BMC Cardiovasc. Disord.202020132010.1186/s12872‑020‑01596‑w32631246
    [Google Scholar]
  32. XuM. LiX. SongL. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway.Pharm. Biol.202058165566310.1080/13880209.2020.177931832649845
    [Google Scholar]
  33. XiaodongY.E. CaiY. WangT. LiX. WangS. WuQ. LiuD. IrwinM.G. XiaZ. Repeated remote ischemic preconditioning enhances post‐ischemic myocardial STAT5A and STAT3 but not STAT5B to confer cardioprotection in diabetic rats.FASEB J.202034S1110.1096/fasebj.2020.34.s1.09040
    [Google Scholar]
  34. BroughtonK. KorskiK. EcheagarayO. AdamsonR. DembitskyW. LuZ. SchaeferE. SussmanM.A. Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells.Gene Ther.2019267-832433710.1038/s41434‑019‑0084‑531239537
    [Google Scholar]
  35. ParkJ.H. LeeN.K. LimH.J. JiS. KimY.J. JangW.B. KimD.Y. KangS. YunJ. HaJ. KimH. LeeD. BaekS.H. KwonS.M. Pharmacological inhibition of mTOR attenuates replicative cell senescence and improves cellular function via regulating the STAT3-PIM1 axis in human cardiac progenitor cells.Exp. Mol. Med.202052461562810.1038/s12276‑020‑0374‑432273566
    [Google Scholar]
  36. BragaC.L. FelixN.S. TeixeiraD.E. VieiraJ.B. Silva-AguiarR.P. BoseR.M. AntunesM.A. RochaN.N. Caruso-NevesC. CruzF.F. RoccoP.R.M. SilvaP.L. Niclosamide attenuates lung vascular remodeling in experimental pulmonary arterial hypertension.Eur. J. Pharmacol.202088717343810.1016/j.ejphar.2020.17343832795515
    [Google Scholar]
  37. CasillasA.L. ChauhanS.S. TothR.K. SainzA.G. ClementsA.N. JensenC.C. LanglaisP.R. MirantiC.K. CressA.E. WarfelN.A. Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors.Oncogene202140325142515210.1038/s41388‑021‑01915‑134211090
    [Google Scholar]
  38. JanbandhuV TallapragadaV PatrickR LiY AbeygunawardenaD Humphreys, DT Hif-1a suppresses ROSinduced proliferation of cardiac fibroblasts following myocardial infarction.Cell Stem Cell2022292281297e12.10.1016/j.stem.2021.10.00934762860
    [Google Scholar]
  39. GarsonK-L. Elucidating the underlying mechanisms of benfotiamine-induced cardioprotection.StellenboschStellenbosch University2014
    [Google Scholar]
  40. WangS. SunL. ZhuZ. LiuJ. GeW. LiB. WangB. Cryptotanshinone alleviates myocardial ischemia and reperfusion injury in rats to mitigate ER stress-dependent apoptosis by modulating the JAK1/STAT3 axis.Am. J. Transl. Res.20221475024503935958489
    [Google Scholar]
  41. JiangH YangJ LiT WangX FanZ YeQ DuY. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target.Front Pharmacol2024Mar 1; 15: 133610210.3389/fphar.2024.133610238495094PMC10940489
    [Google Scholar]
  42. ZhangJ. FuL. ZhangJ. ZhouB. TangY. ZhangZ. GuT. Inhibition of microRNA-122-5p relieves myocardial ischemia-reperfusion injury via SOCS1.Hamostaseologie202343427128010.1055/a‑2013‑033636882114
    [Google Scholar]
  43. LiuZ. HanM. DingK. FuR. The role of Pim kinase in immunomodulation.Am. J. Cancer Res.202010124085409733414987
    [Google Scholar]
  44. YangX. LiuC. LeiY. LiuZ. ZhuB. ZhaoD. PIM1 signaling in immunoinflammatory diseases: An emerging therapeutic target.Front. Immunol.202415144378410.3389/fimmu.2024.144378439372407
    [Google Scholar]
  45. MahataS. SahooP.K. PalR. SarkarS. MistryT. GhoshS. NasareV.D. PIM1/STAT3 axis: A potential co-targeted therapeutic approach in triple-negative breast cancer.Med. Oncol.20223977410.1007/s12032‑022‑01675‑235568774
    [Google Scholar]
  46. TóthováZ. TomcJ. DebeljakN. SolárP. STAT5 as a key protein of erythropoietin signalization.Int. J. Mol. Sci.20212213710910.3390/ijms2213710934281163
    [Google Scholar]
  47. DingW. FengH. LiW.J. LiaoH.H. ZhangN. ZhouZ.Y. MouS.Q. LinZ. Xia-HeN.Z. XiaH. TangQ.Z. Apocynin attenuates diabetic cardiomyopathy by suppressing ASK1-p38/JNK signaling.Eur. J. Pharmacol.202190917440210.1016/j.ejphar.2021.17440234348125
    [Google Scholar]
  48. LiuF. FanL.M. GengL. LiJ.M. p47phox-dependent oxidant signalling through ASK1, MKK3/6 and MAPKs in angiotensin II-induced cardiac hypertrophy and apoptosis.Antioxidants2021109136310.3390/antiox1009136334572995
    [Google Scholar]
  49. WangX. NieX. WangH. RenZ. Roles of small GTPases in cardiac hypertrophy (Review).Mol. Med. Rep.202430520810.3892/mmr.2024.1333239301654
    [Google Scholar]
  50. WanH. ZhangJ. LiuZ. DongB. TaoZ. WangG. WangC. RING finger protein 5 protects against acute myocardial infarction by inhibiting ASK1.BMC Cardiovasc. Disord.202424140610.1186/s12872‑024‑04070‑z39098896
    [Google Scholar]
  51. ChenH. ZhouH. YangJ. WanH. HeY. Guhong injection mitigates myocardial ischemia/reperfusion injury by activating GST P to inhibit ASK1-JNK/p38 pathway.Phytomedicine202310915460310.1016/j.phymed.2022.15460336610111
    [Google Scholar]
  52. HuangK. CaiC. HeH. YiB. XuW. LinZ. LvX. LiuR. ZhengC. ZhouY. LinJ. Promotion of Raf-1/ASK1 complex formation by corylin inhibits cell apoptosis in myocardial ischemia/reperfusion injury.Int. Immunopharmacol.202414011292110.1016/j.intimp.2024.11292139133953
    [Google Scholar]
  53. AzizA. FaridS. QinK. WangH. LiuB. PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer.Biomolecules201881710.3390/biom801000729401696
    [Google Scholar]
  54. BorilloG.A. MasonM. QuijadaP. VölkersM. CottageC. McGregorM. DinS. FischerK. GudeN. AvitabileD. BarlowS. AlvarezR. TruffaS. WhittakerR. GlassyM.S. GustafssonA.B. MiyamotoS. GlembotskiC.C. GottliebR.A. BrownJ.H. SussmanM.A. Pim-1 kinase protects mitochondrial integrity in cardiomyocytes.Circ. Res.201010671265127410.1161/CIRCRESAHA.109.21203520203306
    [Google Scholar]
  55. FratiG. VersaciF. SciarrettaS. A novel signalling mechanism regulating telomere length in cardiomyocytes.Oxford University Press20211314
    [Google Scholar]
  56. SamseK. EmathingerJ. HariharanN. QuijadaP. IlvesK. VölkersM. OrmacheaL. De La TorreA. OrogoA.M. AlvarezR. DinS. MohsinS. MonsantoM. FischerK.M. DembitskyW.P. GustafssonÅ.B. SussmanM.A. Functional effect of Pim1 depends upon intracellular localization in human cardiac progenitor cells.J. Biol. Chem.201529022139351394710.1074/jbc.M114.61743125882843
    [Google Scholar]
  57. ZhuH. WangX. SunY. HeW. LiangJ. MoB. LiL. Pim1 overexpression prevents apoptosis in cardiomyocytes after exposure to hypoxia and oxidative stress via upregulating cell autophagy.Cell. Physiol. Biochem.20184962138215010.1159/00049381730257237
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X366280250526131550
Loading
/content/journals/chddt/10.2174/011871529X366280250526131550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test