Skip to content
2000
image of Updated Review of Current Therapeutic Approaches for the Management of Sickle Cell Disease

Abstract

Sickle cell disease is a severe genetic blood disorder marked by the production of abnormal hemoglobin (HbS), leading to sickle-shaped red blood cells that obstruct blood flow and cause various problems, such as the increased risk of infection, persistent anemia, acute pain episodes, and organ damage. Roughly 100,000 Americans suffer from SCD, with approximately 40,000 of them being children. Black people have the highest frequency of the disease. There are six Food and Drug Administration (FDA)-approved drugs, hydroxyurea, L-glutamine, crizanlizumab-TMCA, voxelotor, Casgevy, and Lyfgenia, that are used for the prophylaxis and treatment of serious complications of sickle cell disease. Current treatment approaches focus on symptom management, including pain control, hydroxyurea to reduce pain crises, and transfusions for severe anemia. Based on the clinical trial results, L-glutamine and crizanlizumab-TMCA prevent cell damage and hemoglobin sickling by reducing the sickle cell crisis episodes. At the same time, voxelotor improves hemoglobin oxygen-binding capacity in patients with SCD. Novel therapies, such as gene therapy and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) technology, aim to correct the genetic defect. At the same time, stem cell and bone marrow transplants offer potential cures but are limited by the availability of donors and side effects. Ongoing research seeks to enhance treatment options and develop potential cures for SCD. This review attempts to present a comprehensive overview of the current therapeutic approaches and newly developed innovative medicines to combat and potentially eradicate SCD with an emphasis on their mechanisms, efficacy, and clinical implications.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X364941250627090838
2025-07-14
2025-09-26
Loading full text...

Full text loading...

References

  1. Kavanagh P.L. Fasipe T.A. Wun T. Sickle cell disease: A review. JAMA 2022 328 1 57 68 10.1001/jama.2022.10233 35788790
    [Google Scholar]
  2. Chauhan W. Shoaib S. Fatma R. Zaka-ur-Rab Z. Afzal M. Beta‐thalassemia and the advent of new interventions beyond transfusion and iron chelation. Br. J. Clin. Pharmacol. 2022 88 8 3610 3626 10.1111/bcp.15343 35373382
    [Google Scholar]
  3. Harteveld C.L. Achour A. Arkesteijn S.J.G. ter Huurne J. Verschuren M. Bhagwandien-Bisoen S. Schaap R. Vijfhuizen L. el Idrissi H. Koopmann T.T. The hemoglobinopathies, molecular disease mechanisms and diagnostics. Int. J. Lab. Hematol. 2022 44 S1 Suppl. 1 28 36 10.1111/ijlh.13885 36074711
    [Google Scholar]
  4. De Simone G. Quattrocchi A. Mancini B. di Masi A. Nervi C. Ascenzi P. Thalassemias: From gene to therapy. Mol. Aspects Med. 2022 84 101028 10.1016/j.mam.2021.101028 34649720
    [Google Scholar]
  5. Williams R.A. Williams R.A. Five Diseases That Are Devastating the African American Population. Blacks in Medicine Springer Cham 2020 1 31
    [Google Scholar]
  6. What is sickle cell disease. 2024 Available from: https://www.nhlbi.nih.gov/health/sickle-cell-disease
  7. Thomasy H. New weapons in the fight against sickle cell disease. Hematology. 2023
    [Google Scholar]
  8. Tebbi C.K. Sickle cell disease, a review. Hemato 2022 3 2 341 366 10.3390/hemato3020024
    [Google Scholar]
  9. Pace B.S. Starlard-Davenport A. Kutlar A. Sickle cell disease: Progress towards combination drug therapy. Br. J. Haematol. 2021 194 2 240 251 10.1111/bjh.17312 33471938
    [Google Scholar]
  10. Adio W.S. Christopher F.C. Adesola R.O. Mary F.I. Current trends in the treatment of sickle cell anemia. World J. Nat. Sci. 2022 43 60 75
    [Google Scholar]
  11. Pavan A.R. Terroni B. Dos Santos J.L. Endothelial dysfunction in sickle cell disease: Strategies for the treatment. Nitric Oxide 2024 149 7 17 10.1016/j.niox.2024.05.003 38806107
    [Google Scholar]
  12. Hussein N Henneman L Kai J Qureshi N Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay‐Sachs disease. Cochrane Database Syst Rev 2021 2015 8 CD010849
    [Google Scholar]
  13. Ballas S.K. Darbari D.S. Review/overview of pain in sickle cell disease. Complement. Ther. Med. 2020 49 102327 10.1016/j.ctim.2020.102327 32147066
    [Google Scholar]
  14. Inusa B. Hsu L. Kohli N. Patel A. Ominu-Evbota K. Anie K. Atoyebi W. Sickle cell disease—genetics, pathophysiology, clinical presentation and treatment. Int. J. Neonatal Screen. 2019 5 2 20 10.3390/ijns5020020 33072979
    [Google Scholar]
  15. Darbari D.S. Sheehan V.A. Ballas S.K. The vaso‐occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management. Eur. J. Haematol. 2020 105 3 237 246 10.1111/ejh.13430 32301178
    [Google Scholar]
  16. Houwing M.E. de Pagter P.J. van Beers E.J. Biemond B.J. Rettenbacher E. Rijneveld A.W. Schols E.M. Philipsen J.N.J. Tamminga R.Y.J. van Draat K.F. Nur E. Cnossen M.H. Sickle cell disease: Clinical presentation and management of a global health challenge. Blood Rev. 2019 37 100580 10.1016/j.blre.2019.05.004 31128863
    [Google Scholar]
  17. Nartey E.B. Spector J. Adu-Afarwuah S. Jones C.L. Jackson A. Ohemeng A. Shah R. Koryo-Dabrah A. Kuma A.B.A. Hyacinth H.I. Steiner-Asiedu M. Nutritional perspectives on sickle cell disease in Africa: A systematic review. BMC Nutr. 2021 7 1 9 10.1186/s40795‑021‑00410‑w 33731225
    [Google Scholar]
  18. Bell V. Varzakas T. Psaltopoulou T. Fernandes T. Sickle cell disease update: New treatments and challenging nutritional interventions. Nutrients 2024 16 2 258 10.3390/nu16020258 38257151
    [Google Scholar]
  19. Ali MA Ahmad A Chaudry H Aiman W Aamir S Anwar MY Efficacy and safety of recently approved drugs for sickle cell disease: A review of clinical trials. Exp. Hematol. 2020 92 11 18 10.1016/j.exphem.2020.08.008 32841705
    [Google Scholar]
  20. Glaros A.K. Razvi R. Shah N. Zaidi A.U. Voxelotor: Alteration of sickle cell disease pathophysiology by a first-in-class polymerization inhibitor. Ther. Adv. Hematol. 2021 12 20406207211001136 10.1177/20406207211001136 33796238
    [Google Scholar]
  21. Ahmed S.G. Ibrahim U.A. Pathophysiologic basis of haemolysis in patients with sickle cell disease in steady state and in hyperhaemolytic states: Aetiopathogenesis, management, and mitigation. Niger. J. Basic Clin. Sci. 2023 20 1 10 23 10.4103/njbcs.njbcs_55_22
    [Google Scholar]
  22. Cilek N. Ugurel E. Goksel E. Yalcin O. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J. Cell. Physiol. 2024 239 3 e30958 10.1002/jcp.30958 36748950
    [Google Scholar]
  23. Crossley M. Christakopoulos G.E. Weiss M.J. Effective therapies for sickle cell disease: Are we there yet? Trends Genet. 2022 38 12 1284 1298 10.1016/j.tig.2022.07.003 35934593
    [Google Scholar]
  24. Williams T.N. Thein S.L. Sickle cell anemia and its phenotypes. Annu. Rev. Genomics Hum. Genet. 2018 19 1 113 147 10.1146/annurev‑genom‑083117‑021320 29641911
    [Google Scholar]
  25. Jang T. Poplawska M. Cimpeanu E. Mo G. Dutta D. Lim S.H. Vaso-occlusive crisis in sickle cell disease: A vicious cycle of secondary events. J. Transl. Med. 2021 19 1 397 10.1186/s12967‑021‑03074‑z 34544432
    [Google Scholar]
  26. Onalo R. Cardiovascular changes in sickle cell crises and impact of arginine supplementation in vaso-occlusive crisis and acute chest syndrome. Thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2020
    [Google Scholar]
  27. Zaidi A.U. Glaros A.K. Lee S. Wang T. Bhojwani R. Morris E. Donohue B. Paulose J. Iorga Ş.R. Nellesen D. A systematic literature review of frequency of vaso-occlusive crises in sickle cell disease. Orphanet J. Rare Dis. 2021 16 1 460 10.1186/s13023‑021‑02096‑6 34727959
    [Google Scholar]
  28. Ramsay Z. Bartlett R. Ali A. Grant J. Gordon-Strachan G. Asnani M. Sickle cell disease and pain: Is it all vaso-occlusive crises? Clin. J. Pain 2021 37 8 583 590 10.1097/AJP.0000000000000949 34008506
    [Google Scholar]
  29. Barriteau C.M. McNaull M.A. Sickle cell disease in the emergency department: Complications and management. Clin. Pediatr. Emerg. Med. 2018 19 2 103 109 10.1016/j.cpem.2018.05.005
    [Google Scholar]
  30. Pecker LH Little J Clinical manifestations of sickle cell disease across the lifespan. Sickle Cell Disease and Hematopoietic Stem Cell Transplantation Springer Cham 2018 3 39 10.1007/978‑3‑319‑62328‑3_1
    [Google Scholar]
  31. McKew S. Bates I. Olayemi E. Hematologic diseases. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier 2020 34 43 10.1016/B978‑0‑323‑55512‑8.00005‑3
    [Google Scholar]
  32. Barak M. Hu C. Matthews A. Fortenberry Y.M. Current and future therapeutics for treating patients with sickle cell disease. Cells 2024 13 10 848 10.3390/cells13100848 38786070
    [Google Scholar]
  33. Pingili S. Makkena V.K. Jaramillo A.P. Awosusi B.L. Ayyub J. Dabhi K.N. Gohil N.V. Tanveer N. Hussein S. Hamid P. The role of non-genetic therapies to reduce the incidence of sickle cell crisis: A systematic review. Cureus 2023 15 8 e42785 10.7759/cureus.42785 37664256
    [Google Scholar]
  34. Herity L.B. Vaughan D.M. Rodriguez L.R. Lowe D.K. Voxelotor: A novel treatment for sickle cell disease. Ann. Pharmacother. 2021 55 2 240 245 10.1177/1060028020943059 32674605
    [Google Scholar]
  35. Salinas Cisneros G. Thein S.L. Recent advances in the treatment of sickle cell disease. Front. Physiol. 2020 11 435 10.3389/fphys.2020.00435 32508672
    [Google Scholar]
  36. Zhou X. Jin N. Wang F. Chen B. Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020 20 1 114 10.1186/s12935‑020‑01193‑z 32280306
    [Google Scholar]
  37. Colombatti R. Palazzi G. Masera N. Notarangelo L.D. Bonetti E. Samperi P. Barone A. Perrotta S. Facchini E. Miano M. Del Vecchio G.C. Guerzoni M.E. Corti P. Menzato F. Cesaro S. Casale M. Rigano P. Forni G.L. Russo G. Sainati L. Hydroxyurea prescription, availability and use for children with sickle cell disease in Italy: Results of a National Multicenter survey. Pediatr. Blood Cancer 2018 65 2 e26774 10.1002/pbc.26774 28868627
    [Google Scholar]
  38. Lee M.T. Ogu U.O. Sickle cell disease in the new era: Advances in drug treatment. Transfus. Apheresis Sci. 2022 61 5 103555 10.1016/j.transci.2022.103555 36096995
    [Google Scholar]
  39. Dong M. Ware R.E. Dallmann A. Vinks A.A. Hydroxyurea treatment for sickle cell anemia during pregnancy and lactation: Current evidence and knowledge gaps. Pharmacotherapy 2023 43 5 419 429 10.1002/phar.2793 36928875
    [Google Scholar]
  40. Mkwambe M.C. Deng Y. Zhao D. Review on hydroxyurea usage in young children with sickle cell disease: Examining hemoglobin induction, potential benefits, responses, safety, and effectiveness. Int. J. Clin. Med. 2024 15 1 1 18 10.4236/ijcm.2024.151001
    [Google Scholar]
  41. Pagare P.P. Rastegar A. Abdulmalik O. Omar A.M. Zhang Y. Fleischman A. Safo M.K. Modulating hemoglobin allostery for treatment of sickle cell disease: Current progress and intellectual property. Expert Opin. Ther. Pat. 2022 32 2 115 130 10.1080/13543776.2022.1994945 34657559
    [Google Scholar]
  42. FDA approves hydroxyurea for treatment of pediatric patients with sickle cell anemia. 2017 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-hydroxyurea-treatment-pediatric-patients-sickle-cell-anemia
  43. Weaver S.B. Nonyel N.P. Rungkitwattanakul D. Roles of pharmacists in the management of sickle cell disease in adults: A narrative review. J. Pharm. Technol. 2024 40 2 92 99 10.1177/87551225231222437 38525091
    [Google Scholar]
  44. Dela-Pena J.C. King M.A. Brown J. Nachar V.R. Incorporation of novel therapies for the management of sickle cell disease: A pharmacist’s perspective. J. Oncol. Pharm. Pract. 2022 28 3 646 663 10.1177/10781552211072468 35060419
    [Google Scholar]
  45. Tonin F.S. Ginete C. Ferreira J. Delgadinho M. Santos B. Fernandez-Llimos F. Brito M. Efficacy and safety of pharmacological interventions for managing sickle cell disease complications in children and adolescents: Systematic review with network meta‐analysis. Pediatr. Blood Cancer 2023 70 6 e30294 10.1002/pbc.30294 36916826
    [Google Scholar]
  46. Mukherjee M. Rahaman M. Ray S.K. Shukla P.C. Dolai T.K. Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: A review of natural products, conventional and combinatorial therapies. Mol. Biol. Rep. 2022 49 3 2359 2373 10.1007/s11033‑021‑06977‑8 34822068
    [Google Scholar]
  47. Kapoor S. Little J.A. Pecker L.H. Advances in the treatment of sickle cell disease. Mayo Clin. Proc. 2018 93 12 1810 1824 10.1016/j.mayocp.2018.08.001 30414734
    [Google Scholar]
  48. Carden M.A. Little J. Emerging disease-modifying therapies for sickle cell disease. Haematologica 2019 104 9 1710 1719 10.3324/haematol.2018.207357 31413089
    [Google Scholar]
  49. European Sickle Cell Disease Cohort - Hydroxyurea (ESCORT-HU). 2009 Available from: https://www.clinicaltrials.gov/study/NCT02516579
  50. Yang M. Elmuti L. Badawy S.M. Health‐related quality of life and adherence to hydroxyurea and other disease‐modifying therapies among individuals with sickle cell disease: A systematic review. BioMed Res. Int. 2022 2022 1 2122056 10.1155/2022/2122056 35898672
    [Google Scholar]
  51. Brandow A.M. Liem R.I. Advances in the diagnosis and treatment of sickle cell disease. J. Hematol. Oncol. 2022 15 1 20 10.1186/s13045‑022‑01237‑z 35241123
    [Google Scholar]
  52. Niihara Y. Miller S.T. Kanter J. Lanzkron S. Smith W.R. Hsu L.L. Gordeuk V.R. Viswanathan K. Sarnaik S. Osunkwo I. Guillaume E. Sadanandan S. Sieger L. Lasky J.L. Panosyan E.H. Blake O.A. New T.N. Bellevue R. Tran L.T. Razon R.L. Stark C.W. Neumayr L.D. Vichinsky E.P. A phase 3 trial of l-glutamine in sickle cell disease. N. Engl. J. Med. 2018 379 3 226 235 10.1056/NEJMoa1715971 30021096
    [Google Scholar]
  53. FDA approved L-glutamine powder for the treatment of sickle cell disease. 2017 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approved-l-glutamine-powder-treatment-sickle-cell-disease
  54. Vichinsky E. Hoppe C.C. Ataga K.I. Ware R.E. Nduba V. El-Beshlawy A. Hassab H. Achebe M.M. Alkindi S. Brown R.C. Diuguid D.L. Telfer P. Tsitsikas D.A. Elghandour A. Gordeuk V.R. Kanter J. Abboud M.R. Lehrer-Graiwer J. Tonda M. Intondi A. Tong B. Howard J. A phase 3 randomized trial of voxelotor in sickle cell disease. N. Engl. J. Med. 2019 381 6 509 519 10.1056/NEJMoa1903212 31199090
    [Google Scholar]
  55. FDA approves voxelotor for sickle cell disease. 2023 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-voxelotor-sickle-cell-disease
  56. FDA approves crizanlizumab-tmca for sickle cell disease. 2019 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizanlizumab-tmca-sickle-cell-disease
  57. Singh A. Irfan H. Fatima E. Nazir Z. Verma A. Akilimali A. Revolutionary breakthrough: FDA approves CASGEVY, the first CRISPR/Cas9 gene therapy for sickle cell disease. Ann. Med. Surg. 2024 86 8 4555 4559 10.1097/MS9.0000000000002146 39118728
    [Google Scholar]
  58. Sickle cell disease treatment. 2024 Available from: https://www.nhlbi.nih.gov/health/sickle-cell-disease/treatment
  59. Adashi EY Gruppuso PA Cohen IG CRISPR therapy of sickle cell disease: The dawning of the gene editing era. Am. J. Med. 2024 137 5 390 392 10.1016/j.amjmed.2023.12.018 38184185
    [Google Scholar]
  60. FDA approves first gene therapies to treat patients with sickle cell disease. 2023 Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease
  61. Parums D.V. first regulatory approvals for CRISPR-Cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Med. Sci. Monit. 2024 30 e944204 e1 10.12659/MSM.944204 38425279
    [Google Scholar]
  62. Patel Z. Prajjwal P. Bethineedi L. Patel D. Khullar K. Patel H. Khatri K. Marsool M.D.M. Gadam S. Aleti S. Amir O. Newer modalities and updates in the management of sickle cell disease: A systematic review. J. Blood Med. 2024 15 435 447 10.2147/JBM.S477507 39286637
    [Google Scholar]
  63. Elenga N. Loko G. Etienne-Julan M. Al-Okka R. Adel A.M. Yassin M.A. Real-World data on efficacy of L-glutamine in preventing sickle cell disease-related complications in pediatric and adult patients. Front. Med. 2022 9 931925 10.3389/fmed.2022.931925 35979207
    [Google Scholar]
  64. Vona R. Sposi N.M. Mattia L. Gambardella L. Straface E. Pietraforte D. Sickle cell disease: Role of oxidative stress and antioxidant therapy. Antioxidants 2021 10 2 296 10.3390/antiox10020296 33669171
    [Google Scholar]
  65. Leibovitch J.N. Tambe A.V. Cimpeanu E. Poplawska M. Jafri F. Dutta D. Lim S.H. l-glutamine, crizanlizumab, voxelotor, and cell-based therapy for adult sickle cell disease: Hype or hope? Blood Rev. 2022 53 100925 10.1016/j.blre.2021.100925 34991920
    [Google Scholar]
  66. L-Glutamine Therapy for sickle cell anemia and sickle ß0 Thalassemia. 2005 Available from: https://clinicaltrials.gov/study/NCT00125788
  67. 2010 Available from: https://clinicaltrials.gov/study/NCT01179217
  68. Lugthart S. Ginete C. Kuona P. Brito M. Inusa B.P.D. An update review of new therapies in sickle cell disease: the prospects for drug combinations. Expert Opin. Pharmacother. 2024 25 2 157 170 10.1080/14656566.2024.2317336 38344818
    [Google Scholar]
  69. Torres L. Conran N. Emerging pharmacotherapeutic approaches for the management of sickle cell disease. Expert Opin. Pharmacother. 2019 20 2 173 186 10.1080/14656566.2018.1548610 30499731
    [Google Scholar]
  70. Ferraresi M. Panzieri D.L. Leoni S. Cappellini M.D. Kattamis A. Motta I. Therapeutic perspective for children and young adults living with thalassemia and sickle cell disease. Eur. J. Pediatr. 2023 182 6 2509 2519 10.1007/s00431‑023‑04900‑w 36997768
    [Google Scholar]
  71. Timmins P. Industry update: The latest developments in the field of therapeutic delivery, August 2022. Ther. Deliv. 2022 13 9 429 444 10.4155/tde‑2022‑0053
    [Google Scholar]
  72. Henry E.R. Metaferia B. Li Q. Harper J. Best R.B. Glass K.E. Cellmer T. Dunkelberger E.B. Conrey A. Thein S.L. Bunn H.F. Eaton W.A. Treatment of sickle cell disease by increasing oxygen affinity of hemoglobin. Blood 2021 138 13 1172 1181 10.1182/blood.2021012070 34197597
    [Google Scholar]
  73. Vissa M. Vichinsky E. Voxelotor for the treatment of sickle cell disease. Expert Rev. Hematol. 2021 14 3 253 262 10.1080/17474086.2021.1893688 33602029
    [Google Scholar]
  74. Russo G. Colombatti R. American society of hematology 2020 podcast collection: Sickle cell anaemia. Adv. Ther. 2021 38 Suppl 1 1 7 10.1007/s12325‑021‑01666‑1 33651281
    [Google Scholar]
  75. Study to evaluate the effect of voxelotor administered orally to patients with sickle cell disease (GBT_HOPE) (GBT_HOPE). Patent NCT03036813 2016
  76. Study to evaluate the effect of GBT440 in pediatrics with sickle cell disease (HOPE-KIDS). Patent NCT02850406 2016
  77. Study to evaluate the effect of gbt440 on tcd in pediatrics with sickle cell disease (HOPE Kids 2). Patent NCT04218084 2020
  78. Kaur K Kennedy K Liles D Crizanlizumab in sickle cell disease. Pain Manag. 2023 10.2217/pmt‑2023‑0031 37850353
    [Google Scholar]
  79. Ataga K.I. Kutlar A. Kanter J. Liles D. Cancado R. Friedrisch J. Guthrie T.H. Knight-Madden J. Alvarez O.A. Gordeuk V.R. Gualandro S. Colella M.P. Smith W.R. Rollins S.A. Stocker J.W. Rother R.P. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 2017 376 5 429 439 10.1056/NEJMoa1611770 27959701
    [Google Scholar]
  80. Study to assess safety and impact of selg1 with or without hydroxyurea therapy in sickle cell disease patients with pain crises (SUSTAIN). Patent NCT01895361 2013
  81. Study of two doses of crizanlizumab versus placebo in adolescent and adult sickle cell disease patients (STAND). Patent NCT03814746 2019 https://clinicaltrials.gov/study/NCT03814746
  82. Saelens J.W. Petersen J.E.V. Freedman E. Moseley R.C. Konaté D. Diakité S.A.S. Traoré K. Vance N. Fairhurst R.M. Diakité M. Haase S.B. Taylor S.M. Impact of sickle cell trait hemoglobin on the intraerythrocytic transcriptional program of Plasmodium falciparum. MSphere 2021 6 5 e00755-21 10.1128/mSphere.00755‑21 34668757
    [Google Scholar]
  83. Hatabah D. Abboud M. Investigational Therapies and Advances in Science for SCD: A Glimmer of Hope. Sickle Cell Disease in Sub-Saharan Africa. Routledge 2024 245 261 10.4324/9781003463931‑17
    [Google Scholar]
  84. Hoy S.M. Exagamglogene autotemcel: First approval. Mol. Diagn. Ther. 2024 28 2 133 139 10.1007/s40291‑024‑00696‑z 38228954
    [Google Scholar]
  85. Brusson M. Miccio A. Genome editing approaches to β-hemoglobinopathies. Prog. Mol. Biol. Transl. Sci. 2021 182 153 183 10.1016/bs.pmbts.2021.01.025 34175041
    [Google Scholar]
  86. A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease. Patent NCT03745287 2018
  87. A long-term follow-up study in participants who received CTX001. Patent NCT04208529 2021
  88. Evaluation of safety and efficacy of CTX001 in pediatric participants with severe sickle cell disease (SCD). Patent NCT05329649 2022
  89. Evaluation of efficacy and safety of a single dose of CTX001 in participants with transfusion-dependent β-Thalassemia and severe sickle cell disease. Patent NCT05477563 2022
  90. Evaluation of efficacy and safety of a single dose of Exa-cel in participants with severe sickle cell disease, βS/​βC genotype. Patent NCT05951205 2024
  91. Kanter J. Thompson A.A. Pierciey F.J. Jr Hsieh M. Uchida N. Leboulch P. Schmidt M. Bonner M. Guo R. Miller A. Ribeil J.A. Davidson D. Asmal M. Walters M.C. Tisdale J.F. Lovo‐cel gene therapy for sickle cell disease: Treatment process evolution and outcomes in the initial groups of the HGB ‐206 study. Am. J. Hematol. 2023 98 1 11 22 10.1002/ajh.26741 36161320
    [Google Scholar]
  92. Kanter J. Walters M.C. Hsieh M.M. Krishnamurti L. Kwiatkowski J. Kamble R.T. von Kalle C. Kuypers F.A. Cavazzana M. Leboulch P. Joseney-Antoine M. Asmal M. Thompson A.A. Tisdale J.F. Interim results from a phase 1/2 clinical study of lentiglobin gene therapy for severe sickle cell disease. Blood 2016 128 22 1176 10.1182/blood.V128.22.1176.1176
    [Google Scholar]
  93. A study evaluating the safety and efficacy of lovo-cel in severe sickle cell disease. Patent NCT02140554 2015
  94. A study evaluating gene therapy with BB305 lentiviral vector in sickle cell disease. Patent NCT04293185 2020
  95. Long-term follow-up of subjects with sickle cell disease treated with ex vivo gene therapy. Patent NCT04628585 2024
  96. Rees D.C. Robinson S. Howard J. How I manage red cell transfusions in patients with sickle cell disease. Br. J. Haematol. 2018 180 4 607 617 10.1111/bjh.15115 29377071
    [Google Scholar]
  97. Inusa B.P.D. Atoyebi W. Andemariam B. Hourani J.N. Omert L. Global burden of transfusion in sickle cell disease. Transfus. Apheresis Sci. 2023 62 5 103764 10.1016/j.transci.2023.103764 37541800
    [Google Scholar]
  98. Wallace L.R. Thibodeaux S.R. Transfusion support for patients with sickle cell disease. Transfus. Apheresis Sci. 2022 61 5 103556 10.1016/j.transci.2022.103556 36100552
    [Google Scholar]
  99. Kozanoglu I. Ozdogu H. Use of red blood cell exchange for treating acute complications of sickle cell disease. Transfus. Apheresis Sci. 2018 57 1 23 26 10.1016/j.transci.2018.02.011 29525569
    [Google Scholar]
  100. Han H. Hensch L. Tubman V.N. Indications for transfusion in the management of sickle cell disease. Hematology 2021 2021 1 696 703 10.1182/hematology.2021000307 34889416
    [Google Scholar]
  101. Garraud O. Chiaroni J. An overview of red blood cell and platelet alloimmunisation in transfusion. Transfus. Clin. Biol. 2022 29 4 297 306 10.1016/j.tracli.2022.08.140 35970488
    [Google Scholar]
  102. Obeagu E.I. Anyiam A.F. Obeagu G.U. Managing anemia in HIV through blood transfusions: Clinical considerations and innovations. Elite Journal of HIV. 2024 2 1 16 30
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X364941250627090838
Loading
/content/journals/chddt/10.2174/011871529X364941250627090838
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test