Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Non-alcoholic steatohepatitis (NASH) is a progressive liver disease marked by inflammation and fibrosis, stemming from non-alcoholic fatty liver disease (NAFLD). Despite its rising predominance, current therapeutic medications are limited in efficacy and safety. Recent attention has shifted towards herbal therapies as potential adjuncts or alternatives in NASH management, given their anti-inflammatory, antioxidant, and phospholipid-controlling characteristics. This research study attempted to assess critically existing literature on the efficacy of herbal interventions while managing NASH. The main goal was to assess the possible medicinal advantages of different herbs, highlight their mechanisms of action, and identify gaps in current research to guide future studies. A systematic review of peer-reviewed articles using databases, like PubMed, Scopus, and Google Scholar, was conducted. It included studies that investigated the effects of herbal extracts (., silymarin, curcumin, berberine) on NASH-related outcomes, such as liver function, fibrosis, lipid metabolism, and inflammatory markers. The review identified several herbs with promising therapeutic effects on NASH. Silymarin showed consistent improvements in liver enzymes and fibrosis markers. Curcumin and berberine were effective in reducing inflammation of the liver and oxidative damage. However, the heterogeneity in research designs, dosages, and outcome measures has limited the generalizability of findings. Herbal therapies hold potential as complementary treatments for NASH, with evidence supporting their role in improving liver function and reducing inflammation. To prove their safety and effectiveness, however, greater sample numbers and longer follow-up times are required in standardised clinical studies.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X360903250211101856
2025-03-18
2025-11-16
Loading full text...

Full text loading...

References

  1. LudwigJ. ViggianoT.R. McGILLD.B. OttB.J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease.Mayo Clin. Proc.198055743443810.1016/S0025‑6196(24)00530‑57382552
    [Google Scholar]
  2. SchaffnerF. ThalerH. Nonalcoholic fatty liver disease.Prog. Liver Dis.198682832983086934
    [Google Scholar]
  3. LonardoA. BelliniM. TondelliE. FrazzoniM. GrisendiA. PulvirentiM. Della CasaG. Nonalcoholic steatohepatitis and the “bright liver syndrome”: Should a recently expanded clinical entity be further expanded?Am. J. Gastroenterol.19959011207220747485040
    [Google Scholar]
  4. LonardoA. Fatty liver and nonalcoholic steatohepatitis. Where do we stand and where are we going?Dig. Dis.1999172808910.1159/00001690910545713
    [Google Scholar]
  5. MarchesiniG. BriziM. Morselli-LabateA.M. BianchiG. BugianesiE. McCulloughA.J. ForlaniG. MelchiondaN. Association of nonalcoholic fatty liver disease with insulin resistance.Am. J. Med.1999107545045510.1016/S0002‑9343(99)00271‑510569299
    [Google Scholar]
  6. Cortez-PintoH. CamiloM.E. BaptistaA. De OliveiraA.G. De MouraM.C. Non-alcoholic fatty liver: Another feature of the metabolicsyndrome?Clin. Nutr.199918635335810.1016/S0261‑5614(99)80015‑610634920
    [Google Scholar]
  7. EslamM. SanyalA.J. GeorgeJ. SanyalA. Neuschwander-TetriB. TiribelliC. KleinerD.E. BruntE. BugianesiE. Yki-JärvinenH. GrønbækH. Cortez-PintoH. GeorgeJ. FanJ. ValentiL. AbdelmalekM. Romero-GomezM. RinellaM. ArreseM. EslamM. BedossaP. NewsomeP.N. AnsteeQ.M. JalanR. BatallerR. LoombaR. SookoianS. SarinS.K. HarrisonS. KawaguchiT. WongV.W-S. RatziuV. YilmazY. YounossiZ. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology2020158719992014.e110.1053/j.gastro.2019.11.31232044314
    [Google Scholar]
  8. EslamM. NewsomeP.N. SarinS.K. AnsteeQ.M. TargherG. Romero-GomezM. Zelber-SagiS. Wai-Sun WongV. DufourJ.F. SchattenbergJ.M. KawaguchiT. ArreseM. ValentiL. ShihaG. TiribelliC. Yki-JärvinenH. FanJ.G. GrønbækH. YilmazY. Cortez-PintoH. OliveiraC.P. BedossaP. Adams L.A. Zheng M.H. Fouad Y. Chan W.K. Mendez-SanchezN. AhnS.H. CasteraL. BugianesiE. RatziuV. GeorgeJ. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement.J. Hepatol.202073120220910.1016/j.jhep.2020.03.03932278004
    [Google Scholar]
  9. RinellaM.E. LazarusJ.V. RatziuV. FrancqueS.M. SanyalA.J. KanwalF. RomeroD. AbdelmalekM.F. AnsteeQ.M. ArabJ.P. ArreseM. BatallerR. BeuersU. BoursierJ. BugianesiE. ByrneC.D. NarroG.E.C. ChowdhuryA. Cortez-PintoH. CryerD.R. CusiK. El-KassasM. KleinS. EskridgeW. FanJ. GawriehS. GuyC.D. HarrisonS.A. KimS.U. KootB.G. KorenjakM. KowdleyK.V. LacailleF. LoombaR. Mitchell-ThainR. MorganT.R. PowellE.E. RodenM. Romero-GómezM. SilvaM. SinghS.P. SookoianS.C. SpearmanC.W. TiniakosD. ValentiL. VosM.B. WongV.W.S. XanthakosS. YilmazY. YounossiZ. HobbsA. Villota-RivasM. NewsomeP.N. A multisociety Delphi consensus statement on new fatty liver disease nomenclature.Ann. Hepatol.202429110113310.1016/j.aohep.2023.10113337364816
    [Google Scholar]
  10. BruntE.M. JanneyC.G. Di BisceglieA.M. Neuschwander-TetriB.A. BaconB.R. Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions.Am. J. Gastroenterol.19999492467247410.1111/j.1572‑0241.1999.01377.x10484010
    [Google Scholar]
  11. RinellaM.E. Nonalcoholic fatty liver disease: A systematic review.JAMA2015313222263227310.1001/jama.2015.537026057287
    [Google Scholar]
  12. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease.J. Hepatol.20166461388140210.1016/j.jhep.2015.11.00427062661
    [Google Scholar]
  13. LonardoA. SingalA. OsnaN. KharbandaK.K. Effect of cofactors on NAFLD/NASH and MAFLD. A paradigm illustrating the pathomechanics of organ dysfunction.Metabolism and Target Organ Damage2022231210.20517/mtod.2022.1436090199
    [Google Scholar]
  14. EkstedtM. HagströmH. NasrP. FredriksonM. StålP. KechagiasS. HultcrantzR. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up.Hepatology20156151547155410.1002/hep.2736825125077
    [Google Scholar]
  15. Vilar-GomezE. Calzadilla-BertotL. Wai-Sun WongV. CastellanosM. Aller-de la FuenteR. MetwallyM. EslamM. Gonzalez-FabianL. Alvarez-Quiñones SanzM. Conde-MartínA.F. De BoerB. McLeodD. Hung ChanA.W. ChalasaniN. GeorgeJ. AdamsL.A. Romero-GomezM. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: A multi-national cohort study.Gastroenterology20181552443457.e1710.1053/j.gastro.2018.04.03429733831
    [Google Scholar]
  16. AmpueroJ. AllerR. Gallego-DuránR. CrespoJ. CallejaJ.L. García-MonzónC. Gómez-CamareroJ. CaballeríaJ. Lo IaconoO. IbañezL. García-SamaniegoJ. AlbillosA. FrancésR. Fernández-RodríguezC. DiagoM. SorianoG. AndradeR.J. LatorreR. JorqueraF. MorillasR.M. EscuderoD. EstévezP. GuerraM.H. AugustínS. BanalesJ.M. AspichuetaP. BenllochS. RosalesJ.M. SalmerónJ. TurnesJ. Romero GómezM. Significant fibrosis predicts new-onset diabetes mellitus and arterial hypertension in patients with NASH.J. Hepatol.2020731172510.1016/j.jhep.2020.02.02832147361
    [Google Scholar]
  17. TaylorR.S. TaylorR.J. BaylissS. HagströmH. NasrP. SchattenbergJ.M. IshigamiM. ToyodaH. Wai-Sun WongV. PelegN. ShlomaiA. SebastianiG. SekoY. BhalaN. YounossiZ.M. AnsteeQ.M. McPhersonS. NewsomeP.N. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis.Gastroenterology2020158616111625.e1210.1053/j.gastro.2020.01.04332027911
    [Google Scholar]
  18. SinghS. AllenA.M. WangZ. ProkopL.J. MuradM.H. LoombaR. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies.Clin. Gastroenterol. Hepatol.2015134643654.e910.1016/j.cgh.2014.04.01424768810
    [Google Scholar]
  19. BallestriS. NascimbeniF. RomagnoliD. LonardoA. The independent predictors of non-alcoholic steatohepatitis and its individual histological features.Hepatol. Res.201646111074108710.1111/hepr.1265626785389
    [Google Scholar]
  20. AhmedA. WongR.J. HarrisonS.A. Nonalcoholic fatty liver disease review: Diagnosis, treatment, and outcomes.Clin. Gastroenterol. Hepatol.201513122062207010.1016/j.cgh.2015.07.02926226097
    [Google Scholar]
  21. MachadoM.V. DiehlA.M. Pathogenesis of nonalcoholic steatohepatitis.Gastroenterology201615081769177710.1053/j.gastro.2016.02.06626928243
    [Google Scholar]
  22. NasrP. IgnatovaS. KechagiasS. EkstedtM. Natural history of nonalcoholic fatty liver disease: A prospective follow-up study with serial biopsies.Hepatol. Commun.20182219921010.1002/hep4.113429404527
    [Google Scholar]
  23. YounossiZ. AnsteeQ.M. MariettiM. HardyT. HenryL. EslamM. GeorgeJ. BugianesiE. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.2018151112010.1038/nrgastro.2017.10928930295
    [Google Scholar]
  24. IssaD. PatelV. SanyalA. J. Future therapy for non-alcoholic fatty liver disease.Liver Int.201838Suppl 1566310.1111/liv.13676
    [Google Scholar]
  25. GeierA. TiniakosD. DenkH. TraunerM. From the origin of NASH to the future of metabolic fatty liver disease.Gut20217081570157910.1136/gutjnl‑2020‑32320233632710
    [Google Scholar]
  26. EslamM. El-SeragH.B. FrancqueS. SarinS.K. WeiL. BugianesiE. GeorgeJ. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight.Nat. Rev. Gastroenterol. Hepatol.2022191063865110.1038/s41575‑022‑00635‑535710982
    [Google Scholar]
  27. ZhuF.S. LiuS. ChenX.M. HuangZ.G. ZhangD.W. Effects of n-3 polyunsaturated fatty acids from seal oils on nonalcoholic fatty liver disease associated with hyperlipidemia.World J. Gastroenterol.200814416395640010.3748/wjg.14.639519009658
    [Google Scholar]
  28. SanyalA.J. ChalasaniN. KowdleyK.V. McCulloughA. DiehlA.M. BassN.M. Neuschwander-TetriB.A. LavineJ.E. TonasciaJ. UnalpA. Van NattaM. ClarkJ. BruntE.M. KleinerD.E. HoofnagleJ.H. RobuckP.R. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis.N. Engl. J. Med.2010362181675168510.1056/NEJMoa090792920427778
    [Google Scholar]
  29. LindorK.D. KowdleyK.V. HeathcoteJ.E. HarrisonE.M. JorgensenR. AnguloP. LympJ.F. BurgartL. ColinP. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: Results of a randomized trial.Hepatology200439377077810.1002/hep.2009214999696
    [Google Scholar]
  30. LavineJ.E. SchwimmerJ.B. Van NattaM.L. MollestonJ.P. MurrayK.F. RosenthalP. AbramsS.H. ScheimannA.O. SanyalA.J. ChalasaniN. TonasciaJ. ÜnalpA. ClarkJ.M. BruntE.M. KleinerD.E. HoofnagleJ.H. RobuckP.R. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial.JAMA2011305161659166810.1001/jama.2011.52021521847
    [Google Scholar]
  31. ArgoC.K. PatrieJ.T. LacknerC. HenryT.D. de LangeE.E. WeltmanA.L. ShahN.L. Al-OsaimiA.M. PramoonjagoP. JayakumarS. BinderL.P. Simmons-EgolfW.D. BurksS.G. BaoY. TaylorA.G. RodriguezJ. CaldwellS.H. Effects of n-3 fish oil on metabolic and histological parameters in NASH: A double-blind, randomized, placebo-controlled trial.J. Hepatol.201562119019710.1016/j.jhep.2014.08.03625195547
    [Google Scholar]
  32. ScorlettiE. BhatiaL. McCormickK.G. CloughG.F. NashK. HodsonL. MoysesH.E. CalderP.C. ByrneC.D. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: Results from the WELCOME* study.Hepatology20146041211122110.1002/hep.2728925043514
    [Google Scholar]
  33. BrowningJ.D. SzczepaniakL.S. DobbinsR. NurembergP. HortonJ.D. CohenJ.C. GrundyS.M. HobbsH.H. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity.Hepatology20044061387139510.1002/hep.2046615565570
    [Google Scholar]
  34. ChalasaniN. YounossiZ. LavineJ.E. DiehlA.M. BruntE.M. CusiK. CharltonM. SanyalA.J. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association.Hepatology20125562005202310.1002/hep.2576222488764
    [Google Scholar]
  35. DixonJ.B. BhathalP.S. O’BrienP.E. Nonalcoholic fatty liver disease: Predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese.Gastroenterology200112119110010.1053/gast.2001.2554011438497
    [Google Scholar]
  36. BarazeshM. JaliliS. AkhzariM. FarajiF. KhorramdinE. Recent progresses on pathophysiology, diagnosis, therapeutic modalities, and management of non-alcoholic fatty liver disorder.Curr. Drug Ther.2024191204810.2174/1574885518666230417111247
    [Google Scholar]
  37. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease - Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.2843126707365
    [Google Scholar]
  38. WongR.J. CheungR. AhmedA. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S.Hepatology20145962188219510.1002/hep.2698624375711
    [Google Scholar]
  39. DeprinceA. HaasJ.T. StaelsB. Dysregulated lipid metabolism links NAFLD to cardiovascular disease.Mol. Metab.20204210109210.1016/j.molmet.2020.10109233010471
    [Google Scholar]
  40. MilićS. LulićD. ŠtimacD. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations.World J. Gastroenterol.201420289330933710.3748/wjg.v20.i28.933025071327
    [Google Scholar]
  41. DietrichP. HellerbrandC. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome.Best Pract. Res. Clin. Gastroenterol.201428463765310.1016/j.bpg.2014.07.00825194181
    [Google Scholar]
  42. MarchesiniG. MarzocchiR. AgostiniF. BugianesiE. Nonalcoholic fatty liver disease and the metabolic syndrome.Curr. Opin. Lipidol.200516442142710.1097/01.mol.0000174153.53683.f215990591
    [Google Scholar]
  43. BasaranogluM. BasaranogluG. SentürkH. From fatty liver to fibrosis: A tale of “second hit”.World J. Gastroenterol.20131981158116510.3748/wjg.v19.i8.115823483818
    [Google Scholar]
  44. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.01226823198
    [Google Scholar]
  45. RoebE. GeierA. Nonalcoholic steatohepatitis (NASH) – current treatment recommendations and future developments.Z. Gastroenterol.201957450851710.1055/a‑0784‑882730965381
    [Google Scholar]
  46. KleinerD.E. BruntE.M. Van NattaM. BehlingC. ContosM.J. CummingsO.W. FerrellL.D. LiuY.C. TorbensonM.S. Unalp-AridaA. YehM. McCulloughA.J. SanyalA.J. Design and validation of a histological scoring system for nonalcoholic fatty liver disease.Hepatology20054161313132110.1002/hep.2070115915461
    [Google Scholar]
  47. BedossaP. PoitouC. VeyrieN. BouillotJ.L. BasdevantA. ParadisV. TordjmanJ. ClementK. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients.Hepatology20125651751175910.1002/hep.2588922707395
    [Google Scholar]
  48. SharmaM. PremkumarM. KulkarniA.V. KumarP. ReddyD.N. RaoN.P. Drugs for non-alcoholic steatohepatitis (NASH): quest for the holy grail.J. Clin. Transl. Hepatol.202191405033604254
    [Google Scholar]
  49. BesteL.A. LeipertzS.L. GreenP.K. DominitzJ.A. RossD. IoannouG.N. Trends in burden of cirrhosis and hepatocellular carcinoma by underlying liver disease in US veterans, 2001-2013.Gastroenterology2015149614711482.e510.1053/j.gastro.2015.07.05626255044
    [Google Scholar]
  50. WongR.J. AguilarM. CheungR. PerumpailR.B. HarrisonS.A. YounossiZ.M. AhmedA. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States.Gastroenterology2015148354755510.1053/j.gastro.2014.11.03925461851
    [Google Scholar]
  51. AfzaliA. BerryK. IoannouG.N. Excellent posttransplant survival for patients with nonalcoholic steatohepatitis in the United States.Liver Transpl.2012181293710.1002/lt.2243521932374
    [Google Scholar]
  52. SaklayenM.G. The global epidemic of the metabolic syndrome.Curr. Hypertens. Rep.20182021210.1007/s11906‑018‑0812‑z29480368
    [Google Scholar]
  53. FrithJ. DayC.P. HendersonE. BurtA.D. NewtonJ.L. Non-alcoholic fatty liver disease in older people.Gerontology200955660761310.1159/00023567719690397
    [Google Scholar]
  54. WilliamsC.D. StengelJ. AsikeM.I. TorresD.M. ShawJ. ContrerasM. LandtC.L. HarrisonS.A. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: A prospective study.Gastroenterology2011140112413110.1053/j.gastro.2010.09.03820858492
    [Google Scholar]
  55. Castillo-LeonE. CioffiC.E. VosM.B. Perspectives on youth‐onset nonalcoholic fatty liver disease.Endocrinol. Diabetes Metab.202034e0018410.1002/edm2.18433102800
    [Google Scholar]
  56. WelshJ.A. KarpenS. VosM.B. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988-1994 to 2007-2010.J. Pediatr.20131623496500.e110.1016/j.jpeds.2012.08.04323084707
    [Google Scholar]
  57. FeldsteinA.E. CharatcharoenwitthayaP. TreeprasertsukS. BensonJ.T. EndersF.B. AnguloP. The natural history of non-alcoholic fatty liver disease in children: A follow-up study for up to 20 years.Gut200958111538154410.1136/gut.2008.17128019625277
    [Google Scholar]
  58. GoyalN.P. SchwimmerJ.B. The progression and natural history of pediatric nonalcoholic fatty liver disease.Clin. Liver Dis.201620232533810.1016/j.cld.2015.10.00327063272
    [Google Scholar]
  59. DoychevaI. WattK.D. AlkhouriN. Nonalcoholic fatty liver disease in adolescents and young adults: The next frontier in the epidemic.Hepatology20176562100210910.1002/hep.2906828103626
    [Google Scholar]
  60. TohM.R. WongE.Y.T. WongS.H. NgA.W.T. LooL.H. ChowP.K.H. NgeowJ. Global epidemiology and genetics of hepatocellular carcinoma.Gastroenterology2023164576678210.1053/j.gastro.2023.01.03336738977
    [Google Scholar]
  61. EstesC. RazaviH. LoombaR. YounossiZ. SanyalA. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.Hepatology201867112313310.1002/hep.29466
    [Google Scholar]
  62. AlexanderM. LoomisA.K. van der LeiJ. Duarte-SallesT. Prieto-AlhambraD. AnsellD. PasquaA. LapiF. RijnbeekP. MosseveldM. WaterworthD.M. KendrickS. SattarN. AlazawiW. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: Real-world study of 18 million patients in four European cohorts.BMC Med.20191719510.1186/s12916‑019‑1321‑x31104631
    [Google Scholar]
  63. SherifZ.A. The Rise in the Prevalence of Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma.Nonalcoholic Fatty Liver Disease - An UpdateIntechOpen2019
    [Google Scholar]
  64. YounossiZ.M. BlissettD. BlissettR. HenryL. StepanovaM. YounossiY. RacilaA. HuntS. BeckermanR. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe.Hepatology20166451577158610.1002/hep.2878527543837
    [Google Scholar]
  65. GentileC.L. PagliassottiM.J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease.J. Nutr. Biochem.200819956757610.1016/j.jnutbio.2007.10.00118430557
    [Google Scholar]
  66. DayC.P. JamesO.F.W. Steatohepatitis: A tale of two “hits”?Gastroenterology1998114484284510.1016/S0016‑5085(98)70599‑29547102
    [Google Scholar]
  67. HwangJ.H. SteinD.T. BarzilaiN. CuiM.H. TonelliJ. KishoreP. HawkinsM. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: In vivo MR imaging and spectroscopy studies.Am J Physiol Endocrinol Metab20072936E1663E166910.1152/ajpendo.00590.2006
    [Google Scholar]
  68. GrecoD. KotronenA. WesterbackaJ. PuigO. ArkkilaP. KiviluotoT. LaitinenS. KolakM. FisherR.M. HamstenA. AuvinenP. Yki-JärvinenH. Gene expression in human NAFLD.Am. J. Physiol. Gastrointest. Liver Physiol.20082945G1281G128710.1152/ajpgi.00074.200818388185
    [Google Scholar]
  69. Miquilena-ColinaM.E. Lima-CabelloE. Sánchez-CamposS. García-MediavillaM.V. Fernández-BermejoM. Lozano-RodríguezT. Vargas-CastrillónJ. BuquéX. OchoaB. AspichuetaP. González-GallegoJ. García-MonzónC. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C.Gut201160101394140210.1136/gut.2010.22284421270117
    [Google Scholar]
  70. BrowningJ.D. HortonJ.D. Molecular mediators of hepatic steatosis and liver injury.J. Clin. Invest.2004114214715210.1172/JCI20042242215254578
    [Google Scholar]
  71. SekiS. KitadaT. SakaguchiH. Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases.Hepatol Res.2005332132410.1016/j.hepres.2005.09.020
    [Google Scholar]
  72. TilgH. MoschenA.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis.Hepatology20105251836184610.1002/hep.2400121038418
    [Google Scholar]
  73. PeverillW. PowellL. SkoienR. Evolving concepts in the pathogenesis of NASH: Beyond steatosis and inflammation.Int. J. Mol. Sci.20141558591863810.3390/ijms1505859124830559
    [Google Scholar]
  74. TakakiA. KawaiD. YamamotoK. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH).Int. J. Mol. Sci.20131410207042072810.3390/ijms14102070424132155
    [Google Scholar]
  75. Neuschwander-TetriB.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis.Hepatology201052277478810.1002/hep.2371920683968
    [Google Scholar]
  76. VidelaL. A. RodrigoR. OrellanaM. FernandezV. TapiaG. QuiñonesL. VarelaN. ContrerasJ. LazarteR. CsendesA. RojasJ. MaluendaF. BurdilesP. DiazJ. C. SmokG. ThielemannL. PoniachikJ. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients.Clinical Sci.2004106326126810.1042/CS20030285
    [Google Scholar]
  77. YamaguchiK. YangL. McCallS. HuangJ. YuX.X. PandeyS.K. BhanotS. MoniaB.P. LiY.X. DiehlA.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.Hepatology20074561366137410.1002/hep.2165517476695
    [Google Scholar]
  78. WoutersK. van BilsenM. van GorpP.J. BieghsV. LütjohannD. KerksiekA. StaelsB. HofkerM.H. Shiri-SverdlovR. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice.FEBS Lett.201058451001100510.1016/j.febslet.2010.01.04620114046
    [Google Scholar]
  79. GanL.T. Van RooyenD.M. KoinaM.E. McCuskeyR.S. TeohN.C. FarrellG.C. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent.J. Hepatol.20146161376138410.1016/j.jhep.2014.07.02425064435
    [Google Scholar]
  80. MinH.K. KapoorA. FuchsM. MirshahiF. ZhouH. MaherJ. KellumJ. WarnickR. ContosM.J. SanyalA.J. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease.Cell Metab.201215566567410.1016/j.cmet.2012.04.00422560219
    [Google Scholar]
  81. ZhaoL. ChenY. TangR. ChenY. LiQ. GongJ. HuangA. VargheseZ. MoorheadJ.F. RuanX.Z. Inflammatory stress exacerbates hepatic cholesterol accumulation via increasing cholesterol uptake and de novo synthesis.J. Gastroenterol. Hepatol.201126587588310.1111/j.1440‑1746.2010.06560.x21488946
    [Google Scholar]
  82. XieX. LiaoH. DangH. PangW. GuanY. WangX. ShyyJ.Y.J. ZhuY. SladekF.M. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs.Mol. Endocrinol.200923443444310.1210/me.2007‑053119179483
    [Google Scholar]
  83. ItohM. TamuraA. KanaiS. TanakaM. KanamoriY. ShirakawaI. ItoA. OkaY. HidakaI. TakamiT. HondaY. MaedaM. SaitoY. MurataY. MatozakiT. NakajimaA. KataokaY. OgiT. OgawaY. SuganamiT. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH.J. Exp. Med.202322011e2022068110.1084/jem.2022068137725372
    [Google Scholar]
  84. SimonenP. KotronenA. HallikainenM. SevastianovaK. MakkonenJ. HakkarainenA. LundbomN. MiettinenT.A. GyllingH. Yki-JärvinenH. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity.J. Hepatol.201154115315910.1016/j.jhep.2010.05.03720947198
    [Google Scholar]
  85. SavardC. TartaglioneE.V. KuverR. HaighG.W. FarrellG.C. SubramanianS. ChaitA. YehM.M. QuinnL.S. IoannouG.N. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis.Hepatology2013571819210.1002/hep.2578922508243
    [Google Scholar]
  86. CaballeroF. FernándezA. De LacyA.M. Fernández-ChecaJ.C. CaballeríaJ. García-RuizC. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH.J. Hepatol.200950478979610.1016/j.jhep.2008.12.01619231010
    [Google Scholar]
  87. LangstonT.B. HylemonP.B. GroganW.M. Over-expression of hepatic neutral cytosolic cholesteryl ester hydrolase in mice increases free cholesterol and reduces expression of HMG-CoAR, CYP27, and CYP7A1.Lipids2005401313810.1007/s11745‑005‑1357‑515825828
    [Google Scholar]
  88. BaconB.R. FarahvashM.J. JanneyC.G. Neuschwander-TetriB.A. Nonalcoholic steatohepatitis: An expanded clinical entity.Gastroenterology199410741103110910.1016/0016‑5085(94)90235‑67523217
    [Google Scholar]
  89. MouzakiM. AllardJ. Non-alcoholic steatohepatitis: the therapeutic challenge of a global epidemic.Ann. Gastroenterol.201225320721724713803
    [Google Scholar]
  90. NakajimaK. Multidisciplinary pharmacotherapeutic options for nonalcoholic Fatty liver disease.Int. J. Hepatol.20122012111310.1155/2012/95069323304532
    [Google Scholar]
  91. Chavez-TapiaN.C. Tellez-AvilaF.I. Barrientos-GutierrezT. Mendez-SanchezN. Lizardi-CerveraJ. UribeM. Bariatric surgery for non-alcoholic steatohepatitis in obese patients.Cochrane Libr.201020101CD00734010.1002/14651858.CD007340.pub220091629
    [Google Scholar]
  92. SharmaR.K. Agnivesha, Charaka Samhita, Chakrapanidatta's Ayurveda DipikaVaranasi: Choukhambha Sanskrit Series Office1983
    [Google Scholar]
  93. Picrorhiza kurroa.Available from: https://altmedrev.com/wp-content/uploads/2019/02/v6-3-319.pdf 2001
  94. LeeH.S. YooC.B. KuS.K. Hypolipemic effect of water extracts of Picrorrhiza kurroa in high fat diet treated mouse.Fitoterapia2006777-857958410.1016/j.fitote.2006.09.00417056204
    [Google Scholar]
  95. Dhami-ShahH. VaidyaR. UdipiS. RaghavanS. AbhijitS. MohanV. BalasubramanyamM. VaidyaA. Picroside II attenuates fatty acid accumulation in HepG2 cells via modulation of fatty acid uptake and synthesis.Clin. Mol. Hepatol.2018241778710.3350/cmh.2017.003929254285
    [Google Scholar]
  96. Dhami-shahH. VaidyaR. TalwadekarM. ShawE. UdipiS. Kolthur-seetharamU. VaidyaA. 13. Picroside II reduces lipid accumulation, oxidative stress and mitochondrial dysfunction in in vitro NAFLD HePG2 cell model.J. Clin. Exp. Hepatol.20188S40S4110.1016/j.jceh.2018.06.343
    [Google Scholar]
  97. Dilnawaz Pathan Shakeel Memon Hiba Parkar Pharmacognostical and phytochemical evaluation of Picrorhiza kurroa. Journal of Current Pharma Research2018912561256610.33786/JCPR.2018.v09i01.003
    [Google Scholar]
  98. KumarK.N.S. PadhiM.M. BabuR. Evaluation of pharmacognostic and physicochemical parameters of Picrorhiza kurroa Royle ex Benth.Int. J. Ayurvedic Med.201014147
    [Google Scholar]
  99. MallA.K. ChaubeyS. TiwariR.C. KourG. Pharmacognostical study of Kutaki (Picrorhiza kurroa Royle ex. Benth).Int. J. Res. Ayurveda Pharm.201675364010.7897/2277‑4343.075215
    [Google Scholar]
  100. GuleriaS. TikuA.K. SinghG. KoulA. GuptaS. RanaS. In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants.J. Plant Biochem. Biotechnol.201322191510.1007/s13562‑012‑0105‑6
    [Google Scholar]
  101. JiaL. ZhaoY. Current evaluation of the millennium phytomedicine-ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations.Curr. Med. Chem.200916192475248410.2174/09298670978868214619601793
    [Google Scholar]
  102. YangK. KimH.H. ShimY.R. SongM.J. The efficacy of Panax ginseng for the treatment of nonalcoholic Fatty Liver Disease: A systematic review and meta-analysis of preclinical studies.Nutrients202315372110.3390/nu1503072136771427
    [Google Scholar]
  103. HwangY.C. OhD.H. ChoiM.C. LeeS.Y. AhnK.J. ChungH.Y. LimS.J. ChungS.H. JeongI.K. Compound K attenuates glucose intolerance and hepatic steatosis through AMPK-dependent pathways in type 2 diabetic OLETF rats.Korean J. Intern. Med.201833234735510.3904/kjim.2015.20828142230
    [Google Scholar]
  104. KieferD. PantusoT. Panax ginseng.Am. Fam. Physician20036881539154214596440
    [Google Scholar]
  105. LiangW. ZhouK. JianP. ChangZ. ZhangQ. LiuY. XiaoS. ZhangL. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis.Front. Pharmacol.20211262284110.3389/fphar.2021.62284133679403
    [Google Scholar]
  106. YinP. KongY.S. LiuP.P. WangJ.J. ZhuY. WangG.M. SunM.F. ChenY. GuoG.Y. LiuZ.H. A critical review of key odorants in green tea: Identification and biochemical formation pathway.Trends Food Sci. Technol.202212922123210.1016/j.tifs.2022.09.013
    [Google Scholar]
  107. TanH.R. LauH. LiuS.Q. TanL.P. SakumotoS. LassabliereB. LeongK.C. SunJ. YuB. Characterisation of key odourants in Japanese green tea using gas chromatography-olfactometry and gas chromatography-mass spectrometry.Lebensm. Wiss. Technol.201910822123210.1016/j.lwt.2019.03.054
    [Google Scholar]
  108. LangeK.W. LangeK.M. NakamuraY. Green tea, epigallocatechin gallate and the prevention of Alzheimer’s disease: Clinical evidence.Food Sci. Hum. Wellness202211476577010.1016/j.fshw.2022.03.002
    [Google Scholar]
  109. KochmanJ. JakubczykK. AntoniewiczJ. MrukH. JandaK. Health benefits and chemical composition of Matcha green tea: A review.Molecules20202618510.3390/molecules2601008533375458
    [Google Scholar]
  110. SunJ. DongS. LiJ. ZhaoH. A comprehensive review on the effects of green tea and its components on the immune function.Food Sci. Hum. Wellness20221151143115510.1016/j.fshw.2022.04.008
    [Google Scholar]
  111. LiH.H. LuoL.Y. WangJ. FuD.H. ZengL. Lexicon development and quantitative descriptive analysis of Hunan fuzhuan brick tea infusion.Food Res. Int.201912027528410.1016/j.foodres.2019.02.04731000240
    [Google Scholar]
  112. ZhuJ. NiuY. XiaoZ. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS).Food Chem.202133912813610.1016/j.foodchem.2020.12813633152893
    [Google Scholar]
  113. ZengL. WatanabeN. YangZ. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea ( Camellia sinensis ) to safely and effectively improve tea aroma.Crit. Rev. Food Sci. Nutr.201959142321233410.1080/10408398.2018.150690730277806
    [Google Scholar]
  114. WangJ.Q. FuY.Q. ChenJ.X. WangF. FengZ.H. YinJ.F. ZengL. XuY.Q. Effects of baking treatment on the sensory quality and physicochemical properties of green tea with different processing methods.Food Chem.202238013221710.1016/j.foodchem.2022.13221735101788
    [Google Scholar]
  115. CuiJ. ZhaiX. GuoD. DuW. GaoT. ZhouJ. SchwabW.G. SongC. Characterization of key odorants in Xinyang Maojian green tea and their changes during the manufacturing process.J. Agric. Food Chem.202270127928810.1021/acs.jafc.1c0647334932338
    [Google Scholar]
  116. CaoQ.Q. FuY.Q. LiuY.Y. QinY. ChenJ.X. YinJ.F. XuY.Q. A targeted and nontargeted metabolomics study on the oral processing of epicatechins from green tea.Food Chem.202237813212910.1016/j.foodchem.2022.13212935042106
    [Google Scholar]
  117. SakataR. NakamuraT. TorimuraT. UenoT. SataM. Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: A double-blind placebo-controlled study.Int. J. Mol. Med.201332598999410.3892/ijmm.2013.150324065295
    [Google Scholar]
  118. WolframS. Effects of green tea and EGCG on cardiovascular and metabolic health.J. Am. Coll. Nutr.2007264373S388S10.1080/07315724.2007.1071962617906191
    [Google Scholar]
  119. YangZ. ZhuM. ZhangY. WenB. AnH. OuX. XiongY. LinH. LiuZ. HuangJ. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats.Phytother. Res.20193341019102610.1002/ptr.629530746789
    [Google Scholar]
  120. TangG. XuY. ZhangC. WangN. LiH. FengY. Green tea and epigallocatechin gallate (EGCG) for the management of nonalcoholic fatty liver diseases (NAFLD): Insights into the role of oxidative stress and antioxidant mechanism.Antioxidants2021107107610.3390/antiox1007107634356308
    [Google Scholar]
  121. BoseM. LambertJ.D. JuJ. ReuhlK.R. ShapsesS.A. YangC.S. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice.J. Nutr.200813891677168310.1093/jn/138.9.167718716169
    [Google Scholar]
  122. GanL. MengZ. XiongR. GuoJ. LuX. ZhengZ. DengY. LuoB. ZouF. LiH. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice.Acta Pharmacol. Sin.201536559760510.1038/aps.2015.1125891086
    [Google Scholar]
  123. HuangJ. FengS. LiuA. DaiZ. WangH. ReuhlK. LuW. YangC.S. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice.Mol. Nutr. Food Res.2018624170069610.1002/mnfr.20170069629278293
    [Google Scholar]
  124. SantamarinaA.B. Carvalho-SilvaM. GomesL.M. OkudaM.H. SantanaA.A. StreckE.L. SeelaenderM. Oller do NascimentoC.M. RibeiroE.B. LiraF.S. OyamaL.M. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice.J. Nutr. Biochem.201526111348135610.1016/j.jnutbio.2015.07.00226300331
    [Google Scholar]
  125. KhooW.Y. ChrisfieldB.J. Sae-tanS. LambertJ.D. Mitigation of nonalcoholic fatty liver disease in high-fat-fed mice by the combination of decaffeinated green tea extract and voluntary exercise.J. Nutr. Biochem.20207610826210.1016/j.jnutbio.2019.10826231759197
    [Google Scholar]
  126. SantamarinaA.B. OliveiraJ.L. SilvaF.P. CarnierJ. MennittiL.V. SantanaA.A. de SouzaG.H.I. RibeiroE.B. Oller do NascimentoC.M. LiraF.S. OyamaL.M. Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet.PLoS One20151011e014122710.1371/journal.pone.014122726536464
    [Google Scholar]
  127. RoloA.P. TeodoroJ.S. PalmeiraC.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis.Free Radic. Biol. Med.2012521596910.1016/j.freeradbiomed.2011.10.00322064361
    [Google Scholar]
  128. RinellaM.E. GreenR.M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance.J. Hepatol.2004401475110.1016/j.jhep.2003.09.02014672613
    [Google Scholar]
  129. LiuZ. CuiC. XuP. DangR. CaiH. LiaoD. YangM. FengQ. YanX. JiangP. Curcumin activates AMPK pathway and regulates lipid metabolism in rats following prolonged clozapine exposure.Front. Neurosci.20171155810.3389/fnins.2017.0055829046626
    [Google Scholar]
  130. LeeD.E. LeeS.J. KimS.J. LeeH.S. KwonO.S. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation.Nutrients20191111270210.3390/nu1111270231717261
    [Google Scholar]
  131. ChenS. ZhengY. FangJ. LiuY.L. LiS.H. Flavonoids in lotus (Nelumbo) leaves evaluated by HPLC–MSn at the germplasm level.Food Res. Int.201354179680310.1016/j.foodres.2013.08.031
    [Google Scholar]
  132. TungmunnithumD. PinthongD. HanoC. Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: Uses in traditional medicine, phytochemistry and pharmacological activities.Medicines (Basel)20185412710.3390/medicines504012730477094
    [Google Scholar]
  133. TungmunnithumD. DrouetS. HanoC. Flavonoids from sacred lotus stamen extract slows chronological aging in yeast model by reducing oxidative stress and maintaining cellular metabolism.Cells202211459910.3390/cells1104059935203251
    [Google Scholar]
  134. PastorinoG. CornaraL. SoaresS. RodriguesF. OliveiraM.B.P.P. Liquorice (Glycyrrhiza glabra ): A phytochemical and pharmacological review.Phytother. Res.201832122323233910.1002/ptr.617830117204
    [Google Scholar]
  135. WangX. ZhangH. ChenL. ShanL. FanG. GaoX. Liquorice, a unique “guide drug” of traditional Chinese medicine: A review of its role in drug interactions.J. Ethnopharmacol.2013150378179010.1016/j.jep.2013.09.05524201019
    [Google Scholar]
  136. LiX. SunR. LiuR. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities.Pharmacol. Res.201914421022610.1016/j.phrs.2019.04.02531022523
    [Google Scholar]
  137. LuoW. XuG. SongZ. MuW. WenJ. HuiS. ZhaoJ. ZhanX. BaiZ. XiaoX. Licorice extract inhibits the cGAS-STING pathway and protects against non-alcoholic steatohepatitis.Front. Pharmacol.202314116044510.3389/fphar.2023.116044537081966
    [Google Scholar]
  138. ArablouT. AryaeianN. ValizadehM. SharifiF. HosseiniA. DjalaliM. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus.Int. J. Food Sci. Nutr.201465451552010.3109/09637486.2014.88067124490949
    [Google Scholar]
  139. ShidfarF. RajabA. RahidehT. KhandouziN. HosseiniS. ShidfarS. The effect of ginger ( Zingiber officinale ) on glycemic markers in patients with type 2 diabetes.J. Complement. Integr. Med.201512216517010.1515/jcim‑2014‑002125719344
    [Google Scholar]
  140. ZhouQ. PengY. ChenF. DaiJ. Ginger supplementation for the treatment of non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials.Afr. Health Sci.202323161462110.4314/ahs.v23i1.6537545930
    [Google Scholar]
  141. XiaY. YanM. WangP. HamadaK. YanN. HaoH. GonzalezF.J. YanT. Withaferin A in the treatment of Liver Diseases: Progress and pharmacokinetic insights.Drug Metab. Dispos.202250568569310.1124/dmd.121.00045534903587
    [Google Scholar]
  142. SaleemS. MuhammadG. HussainM.A. AltafM. BukhariS.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective.Iran. J. Basic Med. Sci.202023121501152633489024
    [Google Scholar]
  143. SunG.Y. LiR. CuiJ. HanninkM. GuZ. FritscheK.L. LubahnD.B. SimonyiA. Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells.Neuromolecular Med.201618324125210.1007/s12017‑016‑8411‑027209361
    [Google Scholar]
  144. ShiragannavarV.D. Sannappa GowdaN.G. PuttahanumantharayappaL.D. KarunakaraS.H. BhatS. PrasadS.K. KumarD.P. SanthekadurP.K. The ameliorating effect of withaferin A on high-fat diet-induced non-alcoholic fatty liver disease by acting as an LXR/FXR dual receptor activator.Front. Pharmacol.202314113595210.3389/fphar.2023.113595236909161
    [Google Scholar]
  145. AkhtarS. IsmailT. FraternaleD. SestiliP. Pomegranate peel and peel extracts: Chemistry and food features.Food Chem.201517441742510.1016/j.foodchem.2014.11.03525529700
    [Google Scholar]
  146. GrabežM. ŠkrbićR. StojiljkovićM.P. Rudić-GrujićV. PaunovićM. ArsićA. PetrovićS. VučićV. Mirjanić-AzarićB. ŠavikinK. MenkovićN. JankovićT. VasiljevićN. Beneficial effects of pomegranate peel extract on plasma lipid profile, fatty acids levels and blood pressure in patients with diabetes mellitus type-2: A randomized, double-blind, placebo-controlled study.J. Funct. Foods20206410369210.1016/j.jff.2019.103692
    [Google Scholar]
  147. GoodarziR. JafariradS. MohammadtaghvaeiN. DastoorpoorM. AlavinejadP. The effect of pomegranate extract on anthropometric indices, serum lipids, glycemic indicators, and blood pressure in patients with nonalcoholic fatty liver disease: A randomized double-blind clinical trial.Phytother. Res.202135105871588210.1002/ptr.724934498307
    [Google Scholar]
  148. ZamanianM.Y. Sadeghi IvraghiM. KhachatryanL.G. VadiyanD.E. BaliH.Y. GolmohammadiM. A review of experimental and clinical studies on the therapeutic effects of pomegranate (Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation.Food Sci. Nutr.202311127485750310.1002/fsn3.371338107091
    [Google Scholar]
  149. JungY.C. KimH.W. MinB.K. ChoJ.Y. SonH.J. LeeJ.Y. LeeH.W. Inhibitory effect of olive leaf extract on obesity in high-fat diet-induced mice.In Vivo.2019333707715
    [Google Scholar]
  150. OmagariK. KatoS. TsuneyamaK. HattaH. SatoM. HamasakiM. SadakaneY. TashiroT. FukuhataM. MiyataY. TamaruS. TanakaK. MuneM. Olive leaf extract prevents spontaneous occurrence of non-alcoholic steatohepatitis in SHR/NDmcr-cp rats.Pathology2010421667210.3109/0031302090343438920025483
    [Google Scholar]
  151. OmagariK. KobaC. NagataA. NgoL.C.T. YamasakiM. FukudaA. YuasaM. SurugaK. InadaN. Ichimura-ShimizuM. TsuneyamaK. Olive leaf powder prevents nonalcoholic steatohepatitis in Sprague–Dawley rats fed a high-fat and high-cholesterol diet.Clin. Nutr. Open Sci.202137475910.1016/j.nutos.2021.04.002
    [Google Scholar]
  152. BedêT.P. JesuzV.A. SouzaV.R. EliasM.B. OliveiraF.L. DiasJ.F. TeodoroA.J. AzeredoV.B. Effects of grape juice, red wine and resveratrol on liver parameters of rat submitted high-fat diet.An. Acad. Bras. Cienc.2020922e2019123010.1590/0001‑376520202019123032785427
    [Google Scholar]
  153. BermanA.Y. MotechinR.A. WiesenfeldM.Y. HolzM.K. The therapeutic potential of resveratrol: A review of clinical trials.NPJ Precis. Oncol.2017113510.1038/s41698‑017‑0038‑628989978
    [Google Scholar]
  154. SchmatzR. PerreiraL.B. StefanelloN. MazzantiC. SpanevelloR. GutierresJ. BagatiniM. MartinsC.C. AbdallaF.H. Daci da Silva SerresJ. ZaniniD. VieiraJ.M. CardosoA.M. SchetingerM.R. MorschV.M. Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats.Biochimie201294237438310.1016/j.biochi.2011.08.00521864646
    [Google Scholar]
  155. YanT. YanN. WangP. XiaY. HaoH. WangG. GonzalezF.J. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease.Acta Pharm. Sin. B202010131810.1016/j.apsb.2019.11.01731993304
    [Google Scholar]
  156. RenS. MaX. WangR. LiuH. WeiY. WeiS. JingM. ZhaoY. Preclinical evidence of berberine on non-alcoholic fatty liver disease: A systematic review and meta-analysis of animal studies.Front. Pharmacol.20211274246510.3389/fphar.2021.74246534566663
    [Google Scholar]
  157. KumarA. Ekavali ChopraK. MukherjeeM. PottabathiniR. DhullD.K. Current knowledge and pharmacological profile of berberine: An update.Eur. J. Pharmacol.201576128829710.1016/j.ejphar.2015.05.06826092760
    [Google Scholar]
  158. KoperskaA. WesołekA. MoszakM. SzulińskaM. Berberine in non-alcoholic fatty Liver Disease — A review.Nutrients20221417345910.3390/nu1417345936079717
    [Google Scholar]
  159. KıraçH. Dalda ŞekerciA. CoşkunÖ.F. GülşenO. Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey.Genet. Resour. Crop Evol.20226951833184110.1007/s10722‑022‑01343‑435125657
    [Google Scholar]
  160. PourrezaS. AzarP. S. SanaieS. NoshadiN. JalaliS. NiazkarH. R. KarimiA. VajdiM. Allium sativum: A potential natural compound for NAFLD prevention and treatment.Front Nutr.202210105910610.1155/2022/6960211
    [Google Scholar]
  161. MardiP. KargarR. FazeliR. QorbaniM. Allium sativum: A potential natural compound for NAFLD prevention and treatment.Front. Nutr.202310105910610.3389/fnut.2023.105910636819702
    [Google Scholar]
  162. JianT. DingX. WuY. RenB. LiW. LvH. ChenJ. Hepatoprotective effect of loquat leaf flavonoids in PM2.5-induced non-alcoholic Fatty Liver Disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways.Int. J. Mol. Sci.20181910300510.3390/ijms1910300530275422
    [Google Scholar]
  163. LiuY. ZhangW. XuC. LiX. Biological activities of extracts from loquat (Eriobotrya Japonica Lindl.): A review.Int. J. Mol. Sci.20161712198310.3390/ijms1712198327929430
    [Google Scholar]
  164. BaeD. YouY. YoonH.G. KimK. LeeY.H. KimY. BaekH. KimS. LeeJ. JunW. Protective effects of loquat (Eriobotrya japonica) leaves against ethanol-induced toxicity in HepG2 cells transfected with CYP2E1.Food Sci. Biotechnol.20101941093109610.1007/s10068‑010‑0154‑3
    [Google Scholar]
  165. YoshiokaS. HamadaA. JobuK. YokotaJ. OnogawaM. KyotaniS. MiyamuraM. SaibaraT. OnishiS. NishiokaY. Effects of Eriobotrya japonica seed extract on oxidative stress in rats with non-alcoholic steatohepatitis.J. Pharm. Pharmacol.201062224124610.1211/jpp.62.02.001220487204
    [Google Scholar]
  166. SinghS.K. SrivastavS. CastellaniR.J. Plascencia-VillaG. PerryG. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders.Neurotherapeutics201916366667410.1007/s13311‑019‑00767‑831376068
    [Google Scholar]
  167. MahadevanS. ParkY. Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses.J. Food Sci.2008731R14R1910.1111/j.1750‑3841.2007.00597.x18211362
    [Google Scholar]
  168. TanX. SunZ. LiuQ. YeH. ZouC. YeC. WangA. LinH. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) fed high lipid diets.Fish Shellfish Immunol.20187239940910.1016/j.fsi.2017.10.02229032040
    [Google Scholar]
  169. WangS.D. XieZ.Q. ChenJ. WangK. WeiT. ZhaoA.H. ZhangQ.H. Inhibitory effect ofGinkgo biloba extract on fatty liver: Regulation of carnitine palmitoyltransferase 1a and fatty acid metabolism.J. Dig. Dis.2012131052553510.1111/j.1751‑2980.2012.00627.x22988926
    [Google Scholar]
  170. DiehlA.M. DayC. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis.N. Engl. J. Med.2017377212063207210.1056/NEJMra150351929166236
    [Google Scholar]
  171. YangX. LiD. ZhangM. FengY. JinX. LiuD. GuoY. HuY. Ginkgo biloba extract alleviates fatty liver hemorrhagic syndrome in laying hens via reshaping gut microbiota.J. Anim. Sci. Biotechnol.20231419710.1186/s40104‑023‑00900‑w37533076
    [Google Scholar]
  172. KlaikeawN. WongphoomJ. WerawatganonD. ChayanupatkulM. SiriviriyakulP. Anti-inflammatory and anti-oxidant effects of aloe vera in rats with non-alcoholic steatohepatitis.World J. Hepatol.202012736337710.4254/wjh.v12.i7.36332821335
    [Google Scholar]
  173. PfingstgrafI.O. TaulescuM. PopR.M. OrăsanR. VlaseL. UifaleanA. TodeaD. AlexescuT. TomaC. PârvuA.E. Protective effects of Taraxacum officinale L.(dandelion) root extract in experimental acute on chronic liver failure.Antioxidants202110450410.3390/antiox1004050433804908
    [Google Scholar]
  174. SusilowatiR. SetiawanA.M. ZahrohA.F. AshariZ.N. IffiyanaA. HertantoR. BasyarudinM. HartiningsihI. IsmailM. Hepatoprotection of Cinnamomum burmannii ethanolic extract against high-fat and cholesterol diet in Sprague–Dawley rats (Rattus norvegicus).Vet. World202215493093610.14202/vetworld.2022.930‑93635698494
    [Google Scholar]
  175. LiS. DuanF. LiS. LuB. Administration of silymarin in NAFLD/NASH: A systematic review and meta-analysis.Ann. Hepatol.202429210117410.1016/j.aohep.2023.10117438579127
    [Google Scholar]
  176. AminiM.R. SheikhhosseinF. TalebyanA. BazshahiE. DjafariF. HekmatdoostA. Effects of artichoke supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials.Clin. Nutr. Res.202211322823910.7762/cnr.2022.11.3.22835949559
    [Google Scholar]
  177. XueL. LiuK. YanC. DunJ. XuY. WuL. YangH. LiuH. XieL. WangG. LiangY. Schisandra lignans ameliorate nonalcoholic steatohepatitis by regulating aberrant metabolism of phosphatidylethanolamines.Acta Pharm. Sin. B20231383545356010.1016/j.apsb.2023.04.00937655337
    [Google Scholar]
  178. MohtashamianA. EbrahimzadehA. ShamekhiZ. SharifiN. Nigella sativa supplementation and non-alcoholic fatty liver disease: A systematic review of clinical trials.Avicenna J. Phytomed.2023131183310.22038/AJP.2022.2006036698733
    [Google Scholar]
  179. TaghaviS.A. BabaeiA. MohammadiA. MahdiyarM. IranpourP. EjtehadiF. MohagheghzadehA. Comparison of the efficacy of oral fenugreek seeds hydroalcoholic extract versus placebo in nonalcoholic fatty liver disease; A randomized, triple-blind controlled pilot clinical trial.Indian J. Pharmacol.2020522869310.4103/ijp.IJP_17_1932565595
    [Google Scholar]
  180. PonnusamY. LouisT. MadhavachandranV. KumarS. ThopraniN. HamblinM.R. LakshmananS. Antioxidant activity of The Ancient Herb, Holy Basil in CCl4-induced liver injury in rats.Ayurvedic201522343810.14259/av.v2i2.17826925464
    [Google Scholar]
  181. LiS. MengF. LiaoX. WangY. SunZ. GuoF. LiX. MengM. LiY. SunC. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.PLoS One201491e8672410.1371/journal.pone.008672424489777
    [Google Scholar]
  182. Abu HassanM.R. Hj Md SaidR. ZainuddinZ. OmarH. Md AliS.M. ArisS.A. ChanH.K. Effects of one-year supplementation with Phyllanthus niruri on fibrosis score and metabolic markers in patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial.Heliyon202396e1665210.1016/j.heliyon.2023.e1665237313177
    [Google Scholar]
  183. JessicaJ. RumaI.M.W. WidiantiI.G.A. Burdock Root (Arctium lappa) reduces steatosis and Serum Malondialdehyde in wistar rats fed with used cooking oil.EJBPS2023231510.24018/ejbiomed.2023.2.3.67
    [Google Scholar]
  184. HoC.H. HuangJ.H. SunM.S. TzengI.S. HsuY.C. KuoC.Y. Wild bitter melon extract regulates LPS-induced hepatic stellate cell activation, inflammation, endoplasmic reticulum stress, and ferroptosis.Evid Based Complement Alternat Med20212021667112910.1155/2021/6671129
    [Google Scholar]
  185. ParikhM. HirstB.C. O’HaraK.A. MaddafordT.G. AustriaJ.A. StamenkovicA. YuL. KuraB. GargB. NetticadanT. ProctorS.D. PierceG.N. Beneficial effects of dietary flaxseed on non-alcoholic Fatty liver disease.Nutrients202416446610.3390/nu1604046638398791
    [Google Scholar]
  186. Mboumba BouassaR.S. SebastianiG. Di MarzoV. JenabianM.A. CostiniukC.T. Cannabinoids and Chronic Liver Diseases.Int. J. Mol. Sci.20222316942310.3390/ijms2316942336012687
    [Google Scholar]
  187. GavilánJ.V. Phyllanthus urinaria (chamber bitter).2022Available from: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.46061
  188. GaoZ. ZhangC. JinL. YaoW. Efficacy of sea buckthorn therapy in patients with nonalcoholic fatty liver disease.Chin. Med. (Irvine Calif.)20145422323010.4236/cm.2014.54027
    [Google Scholar]
  189. AmatoA. CaldaraG.F. NuzzoD. BaldassanoS. PiconeP. RizzoM. MulèF. Di CarloM. NAFLD and atherosclerosis are prevented by a natural dietary supplement containing curcumin, silymarin, guggul, chlorogenic acid and inulin in mice fed a high-fat diet.Nutrients20179549210.3390/nu905049228505074
    [Google Scholar]
  190. MerendaT. JuszczakF. FerierE. DuezP. PatrisS. DeclèvesA.É. NachtergaelA. Natural compounds proposed for the management of non-alcoholic fatty liver disease.Nat. Prod. Bioprospect.20241412410.1007/s13659‑024‑00445‑z38556609
    [Google Scholar]
  191. MajeedM. NarayananN.K. MundkurL. PrakasanP. NagabhushanamK. Super Fruit Amla (Emblica officinalis, Gaertn) in Diabetes Management and Ensuing Complications: A Concise Review.Nutraceuticals20233332935210.3390/nutraceuticals3030026
    [Google Scholar]
  192. BhattacharjeeS. BanerjeeA. Role of Ethnomedicinal Resources to Cure Metabolic Diseases.Traditional Resources and Tools for Modern Drug Discovery: Ethnomedicine and Pharmacology.SingaporeSpringer Nature Singapore202412918210.1007/978‑981‑97‑4600‑2_6
    [Google Scholar]
  193. NurhayatiT. RidhoM.F. SantosoP.T.R. SetiawanS. GoenawanH. TarawanV.M. Effects of Moringa oleifera leaf extract on liver histopathology: A systematic review.J. Nutr. Metab.202420241681599310.1155/2024/681599338993633
    [Google Scholar]
  194. BansalJ. KumarN. MalviyaR. Kumar SharmaP. Hepatoprotective models and various natural product used in hepatoprotective agents: A review.Pharmacogn. Commun.20144323010.5530/pc.2014.3.2
    [Google Scholar]
  195. FarajiS. DaneghianS. AlizadehM. Effects of chicory (Cichorium intybus L.) on nonalcoholic fatty liver disease.Tradit. Med. Res.202056476-48610.53388/TMR20200603192
    [Google Scholar]
  196. KimH.J. KimS. LeeA.Y. JangY. DavaadamdinO. HongS.H. KimJ.S. ChoM.H. The effects of Gymnema sylvestre in high-fat diet-induced metabolic disorders.Am. J. Chin. Med.201745481383210.1142/S0192415X1750043428514906
    [Google Scholar]
  197. TsaiS.Y. ChungP.C. OwagaE.E. TsaiI.J. WangP.Y. TsaiJ.I. YehT.S. HsiehR.H. Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis.Nutr. Metab. (Lond.)20161318810.1186/s12986‑016‑0148‑027980597
    [Google Scholar]
  198. Misiakiewicz-HasK. Maciejewska-MarkiewiczD. RzeszotekS. PilutinA. KolasaA. SzumilasP. StachowskaE. WiszniewskaB. The obscure effect of tribulus terrestris saponins plus inulin on liver morphology, liver fatty acids, plasma glucose, and lipid profile in SD rats with and without induced type 2 diabetes mellitus.Int. J. Mol. Sci.20212216868010.3390/ijms2216868034445384
    [Google Scholar]
  199. ToppoE. Sylvester DarvinS. EsakkimuthuS. BuvanesvaragurunathanK. Ajeesh KrishnaT.P. Antony CaesarS. StalinA. BalakrishnaK. PandikumarP. IgnacimuthuS. Al-DhabiN.A. Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models.Biomed. Pharmacother.201810797998810.1016/j.biopha.2018.08.01930257410
    [Google Scholar]
  200. WaniF.A. AlbahrawyA.Z. RahimanS. Hypolipidemic activity of olive oil (olea europaea) against high fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice.Open Journal of Pathology201553738310.4236/ojpathology.2015.53011
    [Google Scholar]
  201. KimT. MijanM.A. LeeJ. YunJ. ChungJ.H. SonS.M. KwonR.J. Essential oils for the treatment and management of Nonalcoholic Fatty Liver Disease (NAFLD).Nat. Prod. Commun.20241941934578X241250248
    [Google Scholar]
  202. WangR. WangL. WuH. ZhangL. HuX. LiC. LiuS. Noni (Morinda citrifolia L.) fruit phenolic extract supplementation ameliorates NAFLD by modulating insulin resistance, oxidative stress, inflammation, liver metabolism and gut microbiota.Food Res. Int.202216011173210.1016/j.foodres.2022.11173236076420
    [Google Scholar]
  203. DongH. ZhaoY. TengH. JiangT. YueY. ZhangS. FanL. YanM. ShaoS. Pueraria lobata antioxidant extract ameliorates non-alcoholic fatty liver by altering hepatic fat accumulation and oxidative stress.J. Ethnopharmacol.202433311846810.1016/j.jep.2024.11846838906339
    [Google Scholar]
  204. KsiążekE. GoluchZ. BochniakM. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research.Nutrients20241617294010.3390/nu1617294039275255
    [Google Scholar]
  205. LeeY. PhamT.X. BaeM. HuS. O’NeillE. ChunO.K. HanM.J. KooS.I. ParkY.K. LeeJ.Y. Blackcurrant (Ribes nigrum) prevents obesity-induced nonalcoholic Steatohepatitis in mice.Obesity (Silver Spring)201927111212010.1002/oby.2235330569636
    [Google Scholar]
  206. RoyJ.R. JanakiC.S. JayaramanS. VeeraraghavanV.P. PeriyasamyV. BalajiT. VijayamalathiM. BhuvaneswariP. SwethaP. Hypoglycemic potential of carica papaya in liver is mediated through IRS-2/PI3K/SREBP-1c/GLUT2 signaling in high-fat-diet-induced type-2 diabetic male rats.Toxics202311324010.3390/toxics1103024036977005
    [Google Scholar]
  207. MohibM. AfnanK. ParanT.Z. KhanS. SarkerJ. HasanN. HasanI. SagorA.T. Beneficial role of citrus fruit polyphenols against hepatic dysfunctions: A review.J. Diet. Suppl.201815222325010.1080/19390211.2017.133030128641051
    [Google Scholar]
  208. OgunroO.B. RichardG. IzahS.C. OvuruK.F. BabatundeO.T. DasM. Citrus aurantium: Phytochemistry, Therapeutic Potential, Safety Considerations, and Research Needs.Herbal Medicine Phytochemistry: Applications and Trends.ChamSpringer International Publishing2023140
    [Google Scholar]
  209. ChalasaniN. YounossiZ. LavineJ.E. DiehlA.M. BruntE.M. CusiK. CharltonM. SanyalA.J. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology.Gastroenterology201214271592160910.1053/j.gastro.2012.04.00122656328
    [Google Scholar]
  210. AwortweC. MakiwaneM. ReuterH. MullerC. LouwJ. RosenkranzB. Critical evaluation of causality assessment of herb–drug interactions in patients.Br. J. Clin. Pharmacol.201884467969310.1111/bcp.1349029363155
    [Google Scholar]
  211. ChoiS. OhD.S. JerngU.M. A systematic review of the pharmacokinetic and pharmacodynamic interactions of herbal medicine with warfarin.PLoS One2017128e018279410.1371/journal.pone.018279428797065
    [Google Scholar]
  212. LeiteP.M. de FreitasA.A. MourãoA.O.M. MartinsM.A.P. CastilhoR.O. Warfarin safety: A cross-sectional study of the factors associated with the consumption of medicinal plants in a Brazilian anticoagulation clinic.Am. J. Cardiovasc. Drugs201818323124310.1007/s40256‑018‑0268‑129476459
    [Google Scholar]
  213. LimJ.W. CheeS.X. WongW.J. HeQ.L. LauT.C. Traditional Chinese medicine: Herb-drug interactions with aspirin.Singapore Med. J.201859523023910.11622/smedj.201805129796686
    [Google Scholar]
  214. AlhusbanA.A. AtaS.A. ShraimS.A. The safety assessment of toxic metals in commonly used pharmaceutical herbal products and traditional herbs for infants in the Jordanian market.Biol. Trace Elem. Res.201829730748
    [Google Scholar]
  215. ShahbazO. MahajanS. LewisJ.H. Highlights of drug - and herb- induced liver injury in the literature from 2016: how best to translate new information into clinical practice?Expert Opin. Drug Metab. Toxicol.201713993595110.1080/17425255.2017.136239128772086
    [Google Scholar]
  216. TeschkeR. AndradeR. Drug, herb, and dietary supplement hepatotoxicity.Int. J. Mol. Sci.2016179148810.3390/ijms1709148827608014
    [Google Scholar]
  217. TeschkeR. FrenzelC. SchulzeJ. EickhoffA. Herbal hepatotoxicity: Challenges and pitfalls of causality assessment methods.World J. Gastroenterol.201319192864288210.3748/wjg.v19.i19.286423704820
    [Google Scholar]
  218. ZhuY. NiuM. ChenJ. ZouZ. MaZ. LiuS. WangR. HeT. SongH. WangZ. PuS. MaX. WangL. BaiZ. ZhaoY. LiY. WangJ. XiaoX. Hepatobiliary and pancreatic: Comparison between Chinese herbal medicine and Western medicine-induced liver injury of 1985 patients.J. Gastroenterol. Hepatol.20163181476148210.1111/jgh.1332326896664
    [Google Scholar]
  219. ZhengS. HoosL. CookJ. TetzloffG. DavisH.Jr van HeekM. HwaJ.J. Ezetimibe improves high fat and cholesterol diet-induced non-alcoholic fatty liver disease in mice.Eur. J. Pharmacol.2008584111812410.1016/j.ejphar.2008.01.04518329014
    [Google Scholar]
  220. ZhangS. WangJ. LiuQ. HarnishD.C. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis.J. Hepatol.200951238038810.1016/j.jhep.2009.03.02519501927
    [Google Scholar]
  221. YangM. QiX. LiN. KaifiJ.T. ChenS. WheelerA.A. KimchiE.T. EricssonA.C. RectorR.S. Staveley-O’CarrollK.F. LiG. Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol.Nat. Commun.202314122810.1038/s41467‑023‑35861‑136646715
    [Google Scholar]
  222. KristiansenM.N.B. VeidalS.S. RigboltK.T.G. TølbølK.S. RothJ.D. JelsingJ. VrangN. FeighM. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy.World J. Hepatol.201681667368410.4254/wjh.v8.i16.67327326314
    [Google Scholar]
  223. FlessaC.M. Nasiri-AnsariN. KyrouI. LecaB.M. LianouM. ChatzigeorgiouA. KaltsasG. KassiE. RandevaH.S. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research.Int. J. Mol. Sci.202223241579110.3390/ijms23241579136555433
    [Google Scholar]
  224. OmagariK. SuzutaM. TaniguchiA. KumamotoR. KoyamaY. FukudaA. SurugaK. Ichimura-ShimizuM. TsuneyamaK. A non-obese, diet-induced animal model of nonalcoholic steatohepatitis in Wistar/ST rats compared to Sprague-Dawley rats.Clin. Nutr. Exp.20203011410.1016/j.yclnex.2020.03.001
    [Google Scholar]
  225. LiH. TothE. CherringtonN.J. Asking the right questions with animal models: methionine-and choline-deficient model in predicting adverse drug reactions in human NASH.Toxicol. Sci.20181611233310.1093/toxsci/kfx25329145614
    [Google Scholar]
  226. SaigoY. UnoK. IshigureT. OdakeT. OhtaT. Pathophysiological features of rat models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.In vivo2024383990999
    [Google Scholar]
  227. CarreresL. JílkováZ.M. VialG. MarcheP.N. DecaensT. LeratH. Modeling Diet-Induced NAFLD and NASH in Rats: A Comprehensive Review.Biomedicines20219437810.3390/biomedicines904037833918467
    [Google Scholar]
  228. NashM.J. DobrinskikhE. JanssenR.C. LovellM.A. SchadyD.A. LevekC. JonesK.L. D’AlessandroA. KievitP. AagaardK.M. McCurdyC.E. GannonM. FriedmanJ.E. WesolowskiS.R. Maternal Western diet is associated with distinct preclinical pediatric NAFLD phenotypes in juvenile nonhuman primate offspring.Hepatol. Commun.202372e001410.1097/HC9.000000000000001436691970
    [Google Scholar]
  229. KulkarniA. IbrahimS. HaiderI. BashaA. MontgomeryE. ErmisE. MirmiraR.G. AndersonR.M. A Novel 2-hit zebrafish model to study early pathogenesis of Non-Alcoholic Fatty Liver Disease.Biomedicines202210247910.3390/biomedicines1002047935203687
    [Google Scholar]
  230. LiuJ. WangS.P. 1821-P: Foz mice with a mutation in the Alms1 gene model the metabolic syndrome with advanced stages of nonalcoholic steatohepatitis and fibrosis.Diabetes202069Suppl 1
    [Google Scholar]
  231. García-LezanaT. RaurellI. BravoM. Torres-ArauzM. SalcedoM.T. SantiagoA. SchoenenbergerA. ManichanhC. GenescàJ. MartellM. AugustinS. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis.Hepatology20186741485149810.1002/hep.2964629113028
    [Google Scholar]
  232. KawasakiT. IgarashiK. KoedaT. SugimotoK. NakagawaK. HayashiS. YamajiR. InuiH. FukusatoT. YamanouchiT. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis.J. Nutr.2009139112067207110.3945/jn.109.10585819776184
    [Google Scholar]
  233. BashaA. MayS.C. AndersonR.M. SamalaN. MirmiraR.G. Non-alcoholic fatty liver disease: Translating disease mechanisms into therapeutics using animal models.Int. J. Mol. Sci.20232412999610.3390/ijms2412999637373143
    [Google Scholar]
  234. PanasevichM.R. MeersG.M. LindenM.A. BoothF.W. PerfieldJ.W.II FritscheK.L. WankhadeU.D. ChintapalliS.V. ShankarK. IbdahJ.A. RectorR.S. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine.Am. J. Physiol. Endocrinol. Metab.20183141E78E9210.1152/ajpendo.00015.201728899857
    [Google Scholar]
  235. BriandF. MaupointJ. BrousseauE. BreynerN. BouchetM. CostardC. Leste-LasserreT. PetitjeanM. ChenL. ChabratA. RichardV. BurcelinR. DubrocaC. SulpiceT. Elafibranor improves diet-induced nonalcoholic steatohepatitis associated with heart failure with preserved ejection fraction in Golden Syrian hamsters.Metabolism202111715470710.1016/j.metabol.2021.15470733444606
    [Google Scholar]
  236. HansenH.H. FeighM. VeidalS.S. RigboltK.T. VrangN. FosgerauK. Mouse models of nonalcoholic steatohepatitis in preclinical drug development.Drug Discov. Today201722111707171810.1016/j.drudis.2017.06.00728687459
    [Google Scholar]
  237. HaradaT. KanehiroH. MizuguchiK. Compositions and methods for treating non-alcoholic steatohepatitis.U.S. Patent 10441560B22019
  238. DohilR. San DiegoJ.S. Methods of treating non-alcoholic steatohepatitis (NASH) using cysteamine products.U.S. Patent 10307386B22019
  239. MizuguchiK. HaradaT. OsadaA. KawanoH. IchiokaM. Compositions and methods for treating non-alcoholic steatohepatitis.U.S. Patent 10058528B22018
  240. HaradaT. KanehiroH. MizuguchiK. Compositions and methods for treating non-alcoholic steatohepatitis.A.U. Patent 2014230444B22018
  241. KennethS. Farnesoid x receptor agonists for the treatment of disease.U.S. Patent 20220323414A12022
  242. ShiY. Triazole N-linked carbamoyl cyclohexyl acids as LPA antagonists.U.S. Patent 10662172B22020
  243. HwangS.Y. KimJ.Y. KimS.S. ChoiI.Y. JungS.Y. KwonS.C. Use of a long acting GLP-1/glucagon receptor dual agonist for the treatment of non-alcoholic fatty liver disease.A.U. Patent 2021203106A12021
  244. BelouskiE.J. EllisonM.M. HamburgerA.E. HechtR.I. LiY.S. MichaelsM.L. SunJ. XuJ. Methods of treating non-alcoholic steatohepatitis using FGF21 mutants.U.S. Patent 11072640B22021
  245. CarringtonP.E. DengQ. NargundR. PalaniA. TuckerT.J. WuC. BianchiE. OrvietoF. PessiA. Co-agonists of the glucagon and GLP-1 receptors.A.U. Patent 2015335828B22018
  246. GommermannN. FaradyC. JanserP. MackayA. MattesH. SmithN. Fooks SolovayC. StieflN.J. VangrevelingheE. VelcickyJ. Von MattA. NLRP3 inflammasome inhibitors.A.U. Patent 2020277738B22023
  247. ErnstE. Prevalence of use of complementary/alternative medicine: a systematic review.Bull. World Health Organ.200078225225710743298
    [Google Scholar]
  248. Van WykB.E. WinkM. Medicinal plants of the world.Aust. J. Med. Herb.200416136
    [Google Scholar]
  249. AvanA. PouraliG. HosseiniZ.S. MaftoohM. NazariE. KhazaeiM. NassiriM. HassanianS.M. Ghayour-MobarhanM. FernsG.A. KianiM.A. Therapeutic potential of herbal medicine against non-alcoholic fatty liver disease.Curr. Drug Targets202324430031910.2174/138945012466623011315011636642873
    [Google Scholar]
  250. Medina-CalizI. Gonzalez-JimenezA. Garcia-CortesM. LucenaM.I. AndradeR. Hepatic damage by natural remedies.Semin. Liver Dis.201838102104010.1055/s‑0038‑162351829471563
    [Google Scholar]
  251. IzzoA.A. ErnstE. Interactions between herbal medicines and prescribed drugs: a systematic review.Drugs200161152163217510.2165/00003495‑200161150‑0000211772128
    [Google Scholar]
  252. XuY. GuoW. ZhangC. ChenF. TanH.Y. LiS. WangN. FengY. Herbal medicine in the treatment of non-alcoholic fatty liver diseases—efficacy, action mechanism, and clinical application.Front. Pharmacol.20201160110.3389/fphar.2020.0060132477116
    [Google Scholar]
  253. LonardoA. MantovaniA. TargherG. BaffyG. Nonalcoholic fatty liver disease and chronic kidney disease: Epidemiology, pathogenesis, and clinical and research implications.Int. J. Mol. Sci.202223211332010.3390/ijms23211332036362108
    [Google Scholar]
  254. SharptonS.R. SchnablB. KnightR. LoombaR. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease.Cell Metab.2021331213210.1016/j.cmet.2020.11.01033296678
    [Google Scholar]
  255. AmorimR. SoaresP. ChavarriaD. BenfeitoS. CagideF. TeixeiraJ. OliveiraP.J. BorgesF. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities.Eur. J. Med. Chem.202427711672310.1016/j.ejmech.2024.11672339163775
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X360903250211101856
Loading
/content/journals/chddt/10.2174/011871529X360903250211101856
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test