Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Objectives

This study aims to investigate the mechanisms underlying the role of chromatin regulator-related genes (CRRGs) in coronary artery disease (CAD) and develop a diagnostic model for CAD.

Methods

We downloaded CAD datasets from the GEO database and utilized R software for machine learning, modeling, and classification of CAD based on CRRGs.

Results

The random forest model was found to be the best approach, identifying USP44, MOCS1, SSRP1, ZNF516, and SCML1 as the top contributing genes for CAD diagnosis and prevention. Differentially expressed CRRGs were associated with aberrant immune cell infiltration in CAD patients. CAD patients were classified into two subtypes based on the expression of differentially expressed CRRGs. The differential expression analysis identified MMP9, LCE1D, LOC92659, SYNGR4, EN2, CACNA1E, GPR78, and LOC92249 as differentially expressed genes distinguishing the two subtypes of CAD. Functional analyses revealed that the differentially expressed genes are enriched in biological processes related to cellular functions, such as responses to metal ions and inorganic substances. The enriched pathways included inflammation and hormone-related pathways, such as IL-17 signaling, endocrine resistance, TNF signaling, and estrogen signaling pathways.

Conclusion

CAD is associated with CRRGs, which may represent a new direction for CAD treatment.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X352182250207062210
2025-02-18
2025-09-02
Loading full text...

Full text loading...

References

  1. DugganJ.P. PetersA.S. TrachiotisG.D. AntevilJ.L. Epidemiology of coronary artery disease.Surg. Clin. North Am.2022102349951610.1016/j.suc.2022.01.007 35671770
    [Google Scholar]
  2. BoudoulasK.D. TriposkiadisF. GelerisP. BoudoulasH. Coronary atherosclerosis: Pathophysiologic basis for diagnosis and management.Prog. Cardiovasc. Dis.201658667669210.1016/j.pcad.2016.04.003 27091673
    [Google Scholar]
  3. MalakarA.K. ChoudhuryD. HalderB. PaulP. UddinA. ChakrabortyS. A review on coronary artery disease, its risk factors, and therapeutics.J. Cell. Physiol.201923410168121682310.1002/jcp.28350 30790284
    [Google Scholar]
  4. API expert consensus document on management of ischemic heart disease.J. Assoc. Phys. India200654469480 16909697
    [Google Scholar]
  5. KantariaM. BuleishviliM. KipianiN.V. OrmotsadzeG. SanikidzeT. RISK-factors of coronary artery disease (review).Georgian Med. News20202997882 32242850
    [Google Scholar]
  6. SproulD. GilbertN. BickmoreW.A. The role of chromatin structure in regulating the expression of clustered genes.Nat. Rev. Genet.200561077578110.1038/nrg1688 16160692
    [Google Scholar]
  7. LenschS. HerschlM.H. LudwigC.H. SinhaJ. HinksM.M. MukundA. FujimoriT. BintuL. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells.eLife202211e7511510.7554/eLife.75115 35678392
    [Google Scholar]
  8. SrinivasanD. ShisodeT. ShrinetJ. FraserP. Chromosome organization through the cell cycle at a glance.J. Cell Sci.202213510jcs24400410.1242/jcs.244004 35608019
    [Google Scholar]
  9. FierzB. PoirierM.G. Biophysics of chromatin dynamics.Annu. Rev. Biophys.201948132134510.1146/annurev‑biophys‑070317‑032847 30883217
    [Google Scholar]
  10. ZandianM. SalgueroG.N. ShannonM.D. PurusottamR.N. TheintT. PoirierM.G. JaroniecC.P. Conformational dynamics of histone H3 tails in chromatin.J. Phys. Chem. Lett.202112266174618110.1021/acs.jpclett.1c01187 34184895
    [Google Scholar]
  11. DongS.S. YaoS. ChenY.X. GuoY. ZhangY.J. NiuH.M. HaoR.H. ShenH. TianQ. DengH.W. YangT.L. Detecting epistasis within chromatin regulatory circuitry reveals CAND2 as a novel susceptibility gene for obesity.Int. J. Obes.201943345045610.1038/s41366‑018‑0069‑2 29717274
    [Google Scholar]
  12. MordauntC.E. ParkB.Y. BakulskiK.M. FeinbergJ.I. CroenL.A. Ladd-AcostaC. NewschafferC.J. VolkH.E. OzonoffS. Hertz-PicciottoI. LaSalleJ.M. SchmidtR.J. FallinM.D. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood.Mol. Autism20191013610.1186/s13229‑019‑0287‑z 31673306
    [Google Scholar]
  13. MorganM.A. ShilatifardA. Chromatin signatures of cancer.Genes Dev.201529323824910.1101/gad.255182.114 25644600
    [Google Scholar]
  14. YuH. HongX. WuH. ZhengF. ZengZ. DaiW. YinL. LiuD. TangD. DaiY. The chromatin accessibility landscape of peripheral blood mononuclear cells in patients with systemic lupus erythematosus at single-cell resolution.Front. Immunol.20211264188610.3389/fimmu.2021.641886 34084162
    [Google Scholar]
  15. BarlowD.P. BartolomeiM.S. Genomic imprinting in mammals.Cold Spring Harb. Perspect. Biol.201462a01838210.1101/cshperspect.a018382 24492710
    [Google Scholar]
  16. Chromatin profiling of coronary artery illuminates genetic risk for heart disease.Nat. Genet.202254675075110.1038/s41588‑022‑01029‑8 35618847
    [Google Scholar]
  17. WangY. GaoH. WangF. Dynamic changes in chromatin accessibility are associated with the atherogenic transitioning of vascular smooth muscle cells.Cardiovasc. Res.20211181327922804 34849613
    [Google Scholar]
  18. DeoR.C. Machine Learning in Medicine.Circulation2015132201920193010.1161/CIRCULATIONAHA.115.001593 26572668
    [Google Scholar]
  19. KimberT.B. ChenY. VolkamerA. Deep learning in virtual screening: Recent applications and developments.Int. J. Mol. Sci.2021229443510.3390/ijms22094435 33922714
    [Google Scholar]
  20. PatelL. ShuklaT. HuangX. UsseryD.W. WangS. Machine learning methods in drug discovery.Molecules20202522527710.3390/molecules25225277 33198233
    [Google Scholar]
  21. BhatnagarR. SardarS. BeheshtiM. PodichettyJ.T. How can natural language processing help model informed drug development?: A review.JAMIA Open202252ooac04310.1093/jamiaopen/ooac043 35702625
    [Google Scholar]
  22. TsamardinosI. CharonyktakisP. PapoutsoglouG. BorboudakisG. LakiotakiK. ZenklusenJ.C. JuhlH. ChatzakiE. LaganiV. Just Add Data: Automated predictive modeling for knowledge discovery and feature selection.NPJ Precis. Oncol.2022613810.1038/s41698‑022‑00274‑8 35710826
    [Google Scholar]
  23. AlqaissiE.Y. AlotaibiF.S. RamzanM.S. Modern machine-learning predictive models for diagnosing infectious diseases.Comput. Math. Methods Med.2022202211310.1155/2022/6902321 35693267
    [Google Scholar]
  24. ChenL. XiaC. SunH. Recent advances of deep learning in psychiatric disorders.Precis. Clin. Med.20203320221310.1093/pcmedi/pbaa029 35694413
    [Google Scholar]
  25. ZhouY. XuX. SongL. WangC. GuoJ. YiZ. LiW. The application of artificial intelligence and radiomics in lung cancer.Precis. Clin. Med.20203321422710.1093/pcmedi/pbaa028 35694416
    [Google Scholar]
  26. KalafiE.Y. NorN.A.M. TaibN.A. GanggayahM.D. TownC. DhillonS.K. Machine learning and deep learning approaches in breast cancer survival prediction using clinical data.Folia Biol.2019655-621222010.14712/fb2019065050212 32362304
    [Google Scholar]
  27. ZhangZ. HoK.M. HongY. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care.Crit. Care201923111210.1186/s13054‑019‑2411‑z 30961662
    [Google Scholar]
  28. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  29. LibbrechtM.W. NobleW.S. Machine learning applications in genetics and genomics.Nat. Rev. Genet.201516632133210.1038/nrg3920 25948244
    [Google Scholar]
  30. DiasR. TorkamaniA. Artificial intelligence in clinical and genomic diagnostics.Genome Med.20191117010.1186/s13073‑019‑0689‑8 31744524
    [Google Scholar]
  31. LuJ. XuJ. LiJ. PanT. BaiJ. WangL. JinX. LinX. ZhangY. LiY. SahniN. LiX. FACER: Comprehensive molecular and functional characterization of epigenetic chromatin regulators.Nucleic Acids Res.20184619100191003310.1093/nar/gky679 30102398
    [Google Scholar]
  32. PranavchandR. ReddyB.M. Current status of understanding of the genetic etiology of coronary heart disease.J. Postgrad. Med.2013591304110.4103/0022‑3859.109492 23525056
    [Google Scholar]
  33. WangK. ShiX. ZhuZ. HaoX. ChenL. ChengS. FooR.S.Y. WangC. Mendelian randomization analysis of 37 clinical factors and coronary artery disease in East Asian and European populations.Genome Med.20221416310.1186/s13073‑022‑01067‑1 35698167
    [Google Scholar]
  34. DesaiB. SahniS. JordanH. SahniR. ReinbeauR. NguyenA. BabalolaO. Risk of cardiovascular disease in male farmers over the age of 45: A review of literature.Cureus2022145e2464210.7759/cureus.24642 35663675
    [Google Scholar]
  35. NairT. JadhavU.M. KumarK.P.S. ManoriaP.C. RoyD.G. AbdullakuttyJ. ShrivastavS. MehtaA. PandeA. PatilR. Consensus statement on holistic management of angina.J. Assoc. Physicians India20216981112 34472819
    [Google Scholar]
  36. KarimanasseriC. Design considerations for coronary stents and their efficacy: A review.Crit. Rev. Biomed. Eng.2021494152810.1615/CritRevBiomedEng.2022040249 35695601
    [Google Scholar]
  37. Al-LameeR.K. FoleyM. RajkumarC.A. FrancisD.P. Revascularization in stable coronary artery disease.BMJ2022377e06708510.1136/bmj‑2021‑067085 35697356
    [Google Scholar]
  38. ColpaertR.M.W. CaloreM. Epigenetics and microRNAs in cardiovascular diseases.Genomics2021113254055110.1016/j.ygeno.2020.12.042 33482325
    [Google Scholar]
  39. CaoY. LuL. LiuM. LiX.C. SunR.R. ZhengY. ZhangP.Y. Impact of epigenetics in the management of cardiovascular disease: A review.Eur. Rev. Med. Pharmacol. Sci.2014182030973104 25392111
    [Google Scholar]
  40. MarshD.J. MaY. DicksonK.A. Histone monoubiquitination in chromatin remodelling: Focus on the histone h2b interactome and cancer.Cancers20201211346210.3390/cancers12113462 33233707
    [Google Scholar]
  41. SaitoY. ZhouH. KobayashiJ. Chromatin modification and NBS1: Their relationship in DNA double-strand break repair.Genes Genet. Syst.201590419520810.1266/ggs.15‑00010 26616756
    [Google Scholar]
  42. WillisM.S. BevilacquaA. PulinilkunnilT. KienesbergerP. TannuM. PattersonC. The role of ubiquitin ligases in cardiac disease.J. Mol. Cell. Cardiol.201471435310.1016/j.yjmcc.2013.11.008 24262338
    [Google Scholar]
  43. ZhouZ.X. RenZ. YanB.J. QuS.L. TangZ.H. WeiD.H. LiuL.S. FuM.G. JiangZ.S. The role of ubiquitin E3 ligase in atherosclerosis.Curr. Med. Chem.202028115216810.2174/0929867327666200306124418 32141415
    [Google Scholar]
  44. MayrS.J. MendelR.R. SchwarzG. Molybdenum cofactor biology, evolution and deficiency.Biochim. Biophys. Acta Mol. Cell Res.20211868111888310.1016/j.bbamcr.2020.118883 33017596
    [Google Scholar]
  45. MayrS.J. RöperJ. SchwarzG. Alternative splicing of the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1) uncovers a novel mitochondrial protein maturation mechanism.J. Biol. Chem.2020295103029303910.1074/jbc.RA119.010720 31996372
    [Google Scholar]
  46. ReissJ. ChristensenE. KurlemannG. ZabotM.T. DorcheC. Genomic structure and mutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A.Hum. Genet.1998103663964410.1007/s004390050884 9921896
    [Google Scholar]
  47. LoganJ.G. YunS. BaoY. FarberE. FarberC.R. RNA-sequencing analysis of differential gene expression associated with arterial stiffness.Vascular202028565566310.1177/1708538120922650 32375599
    [Google Scholar]
  48. GaoY. LiC. WeiL. TengY. NakajimaS. ChenX. XuJ. LegerB. MaH. SpagnolS.T. WanY. DahlK.N. LiuY. LevineA.S. LanL. SSRP1 Cooperates with parp and XRCC1 to facilitate single-strand DNA break repair by chromatin priming.Cancer Res.201777102674268510.1158/0008‑5472.CAN‑16‑3128 28416484
    [Google Scholar]
  49. MarcianòG. VelaD.S. TriaG. SvergunD.I. ByronO. HuangD.T. Structure-specific recognition protein-1 (SSRP1) is an elongated homodimer that binds histones.J. Biol. Chem.201829326100711008310.1074/jbc.RA117.000994 29764934
    [Google Scholar]
  50. GurovaK. ChangH.W. ValievaM.E. SandleshP. StuditskyV.M. Structure and function of the histone chaperone FACT – Resolving FACTual issues.Biochim. Biophys. Acta. Gene Regul. Mech.20181861989290410.1016/j.bbagrm.2018.07.008 30055319
    [Google Scholar]
  51. JiaS. GuoB. WangL. PengL. ZhangL. The current status of SSRP1 in cancer: Tribulation and road ahead.J. Healthc. Eng.202220221910.1155/2022/3528786 35463672
    [Google Scholar]
  52. LaityJ.H. LeeB.M. WrightP.E. Zinc finger proteins: New insights into structural and functional diversity.Curr. Opin. Struct. Biol.2001111394610.1016/S0959‑440X(00)00167‑6 11179890
    [Google Scholar]
  53. KlugA. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.Q. Rev. Biophys.201043112110.1017/S0033583510000089 20478078
    [Google Scholar]
  54. XiaoH. WuD. YangT. FuW. YangL. HuC. WanH. HuX. ZhangC. WuT. Extracellular vesicles derived from HBMSCs improved myocardial infarction through inhibiting zinc finger antisense 1 and activating Akt/Nrf2/HO-1 pathway.Bioengineered202213190591610.1080/21655979.2021.2014389 34974805
    [Google Scholar]
  55. ZouB. HuangT. WuD. HuX. XiaoL. WangC. ZhangH. XiangJ. HuC. WuQ. WuT. Knockdown of ZFAS1 improved the cardiac function of myocardial infarction rats via regulating Wnt/β-catenin signaling pathway.Aging2021139129191292810.18632/aging.202961 33952724
    [Google Scholar]
  56. PapanikosF. DanielK. Goercharn-RamlalA. FeiJ.F. KurthT. WojtaszL. DereliI. FuJ. PenningerJ. HabermannB. SuraniA. StewartA.F. TothA. The enigmatic meiotic dense body and its newly discovered component, SCML1, are dispensable for fertility and gametogenesis in mice.Chromosoma2017126339941510.1007/s00412‑016‑0598‑1 27165042
    [Google Scholar]
  57. BezsonovaI. Solution NMR structure of the DNA-binding domain from Scml2 (sex comb on midleg-like 2).J. Biol. Chem.201428922157391574910.1074/jbc.M113.524009 24727478
    [Google Scholar]
  58. van de VosseE. WalpoleS.M. NicolaouA. van der BentP. CahnA. VaudinM. RossM.T. DurhamJ. PavittR. WilkinsonJ. GrafhamD. BergenA.A.B. Ommenv.G.J.B. YatesJ.R.W. Dunnend.J.T. TrumpD. Characterization of SCML1, a new gene in Xp22, with homology to developmental polycomb genes.Genomics19984919610210.1006/geno.1998.5224 9570953
    [Google Scholar]
  59. WangQ.T. Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins.Dev. Dyn.201224161021103310.1002/dvdy.23796 22514007
    [Google Scholar]
  60. DöringY. SoehnleinO. WeberC. Neutrophil extracellular traps in atherosclerosis and atherothrombosis.Circ. Res.2017120473674310.1161/CIRCRESAHA.116.309692 28209798
    [Google Scholar]
  61. DieterlenM.T. JohnK. ReichenspurnerH. MohrF.W. BartenM.J. Dendritic cells and their role in cardiovascular diseases: A view on human studies.J. Immunol. Res.2016201611310.1155/2016/5946807 27088098
    [Google Scholar]
  62. JabirN.R. FirozC.K. AhmedF. KamalM.A. HindawiS. DamanhouriG.A. AlmehdarH.A. TabrezS. Reduction in CD16/CD56 and CD16/CD3/CD56 natural killer cells in coronary artery disease.Immunol. Invest.201746552653510.1080/08820139.2017.1306866 28414590
    [Google Scholar]
  63. HakŁ. MyśliwskaJ. WięckiewiczJ. SzyndlerK. TrzonkowskiP. SiebertJ. MyśliwskiA. NK cell compartment in patients with coronary heart disease.Immun. Ageing200741310.1186/1742‑4933‑4‑3 17488493
    [Google Scholar]
  64. TangvoraphonkchaiK. DavenportA. Magnesium and cardiovascular disease.Adv. Chro. Kid. Dis.201825325126010.1053/j.ackd.2018.02.010 29793664
    [Google Scholar]
  65. YasueH. MizunoY. HaradaE. Coronary artery spasm - Clinical features, pathogenesis and treatment -.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.2019952536610.2183/pjab.95.005 30745502
    [Google Scholar]
  66. O’GallagherK. CabacoA.R. RyanM. RoomiA. GuH. DancyL. MelikianN. ChowienczykP.J. WebbA.J. ShahA.M. Direct cardiac versus systemic effects of inorganic nitrite on human left ventricular function.Am. J. Physiol. Heart Circ. Physiol.20213211H175H18410.1152/ajpheart.00081.2021 34018850
    [Google Scholar]
  67. BäckM. MichelJ.B. From organic and inorganic phosphates to valvular and vascular calcifications.Cardiovasc. Res.202111792016202910.1093/cvr/cvab038 33576771
    [Google Scholar]
  68. BaciD. BosiA. ParisiL. BuonoG. MortaraL. AmbrosioG. BrunoA. Innate immunity effector cells as inflammatory drivers of cardiac fibrosis.Int. J. Mol. Sci.20202119716510.3390/ijms21197165 32998408
    [Google Scholar]
  69. SunK. LiY. JinJ. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair.Signal Transduct. Target. Ther.2021617910.1038/s41392‑020‑00455‑6 33612829
    [Google Scholar]
  70. CollinsP. Clinical cardiovascular studies of hormone replacement therapy.Am. J. Cardiol.2002901F30F3410.1016/S0002‑9149(01)02220‑2 12106638
    [Google Scholar]
  71. XiaoH. PuJ. JiangG. PanC. XuJ. ZhangB. BaiM. Analysis of long non-coding RNA RMRP in the diagnosis and prognosis of coronary artery disease.J. Cardiothorac. Surg.202419134110.1186/s13019‑024‑02870‑0 38907341
    [Google Scholar]
  72. MirjaliliS.R. SoltaniS. MeybodiZ.H. Marques-VidalP. FirouzabadiD.D. EshraghiR. RestrepoD. GhoshouniH. SarebanhassanabadiM. Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach.Cardiovasc. Diabetol.202423121410.1186/s12933‑024‑02306‑y 38907271
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X352182250207062210
Loading
/content/journals/chddt/10.2174/011871529X352182250207062210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test