Skip to content
2000
Volume 6, Issue 3
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Products of normal and pathologic metabolism can react with proteins to cause covalent modification. When such modifications affect fibrinogen they can potentially alter fibrinogen function. Those that have been best studied are oxidation, nitration, homocysteinylation and glycation. It appears that the clottability of fibrinogen is maintained unless the degree of modification is extensive. However, modest degrees of fibrinogen modification can alter the rate of assembly of fibrin monomers into a fibrin clot and the fiber structure and packing. In addition, some types of modification affect lysine residues that are critical to binding, activation and activity of fibrinolytic enzymes. Any of these alterations could potentially affect the susceptibility of fibrin clots to fibrinolysis, and have been shown to do so in vitro. In the case of homocysteinylation and glycation, good evidence exists that fibrinogen modification affects clot stability in vivo. However, direct evidence is still lacking that these modifications contribute to the increased atherothrombotic risk associated with hyperhomocysteinemia and diabetes.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/187152508784871981
2008-07-01
2025-10-07
Loading full text...

Full text loading...

/content/journals/chamc/10.2174/187152508784871981
Loading

  • Article Type:
    Research Article
Keyword(s): fibrinolysis; glycation; homocysteinylation; nitration; Oxidation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test